Formation des structuresLa formation des structures est le processus primordial de genèse des structures de l'observable actuel à partir d'un état dense, chaud et surtout quasiment uniforme. Comprendre ce passage de l'homogène et uniforme à une grande diversité de structures est un enjeu fondamental en cosmologie.
Ligne d'universEn physique, la ligne d'univers d'un objet est le tracé d'un objet lorsqu'il voyage à travers l'espace-temps en 4 dimensions. Le concept de ligne d'univers se distingue du concept de l'« orbite » ou de la « trajectoire » (tel que l'orbite d'un corps dans l'espace ou la trajectoire d'un camion sur une route) par la dimension temporelle. L'idée des lignes d'univers trouve son origine dans la physique et Einstein en fut le pionnier. Le terme est maintenant utilisé le plus souvent dans les théories de la relativité (générale ou restreinte, par exemple).
Jauge de LorenzLa jauge de Lorenz est une condition que l'on peut introduire en électromagnétisme ; cette condition tient son nom du physicien danois Ludvig Lorenz (elle est souvent attribuée au physicien Hendrik Lorentz, probablement en raison de son invariance sous les transformations de Lorentz). L'introduction de la condition impose un lien entre le potentiel scalaire et le potentiel vecteur associés aux champs électrique et magnétique ; les composantes du potentiel vecteur et le potentiel scalaire forment alors le quadrivecteur potentiel.
Self-perception theorySelf-perception theory (SPT) is an account of attitude formation developed by psychologist Daryl Bem. It asserts that people develop their attitudes (when there is no previous attitude due to a lack of experience, etc.—and the emotional response is ambiguous) by observing their own behavior and concluding what attitudes must have caused it. The theory is counterintuitive in nature, as the conventional wisdom is that attitudes determine behaviors. Furthermore, the theory suggests that people induce attitudes without accessing internal cognition and mood states.
Limit-preserving function (order theory)In the mathematical area of order theory, one often speaks about functions that preserve certain limits, i.e. certain suprema or infima. Roughly speaking, these functions map the supremum/infimum of a set to the supremum/infimum of the image of the set. Depending on the type of sets for which a function satisfies this property, it may preserve finite, directed, non-empty, or just arbitrary suprema or infima. Each of these requirements appears naturally and frequently in many areas of order theory and there are various important relationships among these concepts and other notions such as monotonicity.
SemilatticeIn mathematics, a join-semilattice (or upper semilattice) is a partially ordered set that has a join (a least upper bound) for any nonempty finite subset. Dually, a meet-semilattice (or lower semilattice) is a partially ordered set which has a meet (or greatest lower bound) for any nonempty finite subset. Every join-semilattice is a meet-semilattice in the inverse order and vice versa.