En physique, la ligne d'univers d'un objet est le tracé d'un objet lorsqu'il voyage à travers l'espace-temps en 4 dimensions. Le concept de ligne d'univers se distingue du concept de l'« orbite » ou de la « trajectoire » (tel que l'orbite d'un corps dans l'espace ou la trajectoire d'un camion sur une route) par la dimension temporelle. L'idée des lignes d'univers trouve son origine dans la physique et Einstein en fut le pionnier. Le terme est maintenant utilisé le plus souvent dans les théories de la relativité (générale ou restreinte, par exemple). Cependant, les lignes d'univers sont une manière de représenter le cours des événements. Son utilisation n'est pas liée à une théorie spécifique. Dans un usage général, une ligne d'univers est un chemin séquentiel d'événements (avec le temps et l'endroit comme dimensions) qui marquent l'histoire d'un objet. Le carnet de bord d'un navire est une description de sa ligne d'univers, pour autant qu'il comprenne une « étiquette de temps » attachée à chaque position. Il en va de même pour la vitesse d'un navire selon une mesure de distance (appelée métrique) appropriée à la courbe de la surface de la Terre. En physique, la ligne d'univers d'un objet (comme une particule ponctuelle, par exemple) est la séquence des événements de l'espace-temps correspondant à l'histoire de l'objet. La ligne d'univers est un cas spécial de courbe de l'espace-temps. Chaque point d'une ligne d'univers est un événement qui pourrait être libellé avec le temps et la position spéciale de l'objet à ce moment-là. Par exemple, dans un repère fixe par rapport au soleil, l'orbite de la Terre dans l'espace ressemble à un cercle, à une courbe fermée tridimensionnelle : la Terre retourne chaque année au même point dans l'espace. Cependant, elle arrive à cet endroit à un moment différent (un an plus tard). La ligne d'univers de la terre est ainsi représentée par une hélice dans l'espace-temps, une courbe dans l'espace quadridimensionnel, et elle ne retourne donc jamais au même point.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MATH-423: Differential geometry of framed curves
The Differential Geometry of curves, tubes & ribbons
Séances de cours associées (9)
Courbes algébriques : Normalisation
Couvre le processus de normalisation des courbes algébriques planes, en se concentrant sur les polynômes irréductibles et les courbes affines.
Test Bell: Théories physiques distinctives
Introduit le test Bell, explorant les conclusions de la causalité locale et de la théorie quantique.
Afficher plus
Publications associées (13)

Liquid film instability of an internally coated horizontal tube

François Gallaire, Edouard Boujo, Yves-Marie François Ducimetière, Shahab Eghbali

We study numerically and theoretically the gravity-driven flow of a viscous liquid film coating the inner side of a horizontal cylindrical tube and surrounding a shear-free dynamically inert gaseous core. The liquid-gas interface is prone to the Rayleigh-P ...
AMER PHYSICAL SOC2023

Bounds on photon scattering

Denis Karateev, Kelian Philippe Häring, Marco Meineri, Aditya Hebbar

We study 2-to-2 scattering amplitudes of massless spin one particles in d=4d=4 space-time dimensions, like real world photons. We define a set of non-perturbative observables (Wilson coefficients) which describe these amplitudes at low energies. We use full ...
2022

Lattice formulation of axion inflation. Application to preheating

Daniel Garcia Figueroa, José Roberto Canivete Cuissa

We present a lattice formulation of an interaction phi/Lambda F (F) over tilde between an axion and some U(1) gauge sector with the following properties: it reproduces the continuum theory up to O(dx(mu)(2)) corrections, it preserves exact gauge invariance ...
IOP PUBLISHING LTD2019
Afficher plus
Concepts associés (20)
Espace de Minkowski
thumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Équation d'Einstein
vignette|Équation sur un mur à Leyde. L’'équation d'Einstein ou équation de champ d'Einstein' (en anglais, Einstein field equation ou EFE), publiée par Albert Einstein, pour la première fois le , est l'équation aux dérivées partielles principale de la relativité générale. C'est une équation dynamique qui décrit comment la matière et l'énergie modifient la géométrie de l'espace-temps. Cette courbure de la géométrie autour d'une source de matière est alors interprétée comme le champ gravitationnel de cette source.
Geodesics in general relativity
In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational forces is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic. In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance).
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.