Pays les moins avancésvignette|400px| Les pays les moins avancés (PMA) sont une catégorie de pays créée en 1971 par l'Organisation des Nations unies (ONU), regroupant les pays socio-économiquement les moins développés de la planète. Au , 46 pays appartiennent à cette catégorie ; la plupart d'entre eux se situent en Afrique.
SystèmeUn système est un ensemble d' interagissant entre eux selon certains principes ou règles. Par exemple une molécule, le système solaire, une ruche, une société humaine, un parti, une armée etc. Un système est déterminé par : sa frontière, c'est-à-dire le critère d'appartenance au système (déterminant si une entité appartient au système ou fait au contraire partie de son environnement) ; ses interactions avec son environnement ; ses fonctions (qui définissent le comportement des entités faisant partie du système, leur organisation et leurs interactions) ; Certains systèmes peuvent également avoir une mission (ses objectifs et sa raison d'être) ou des ressources, qui peuvent être de natures différentes (humaine, naturelle, matérielle, immatérielle.
Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
Pays en développementDans la typologie la plus courante, les pays en développement ou pays du Sud sont des pays moins développés économiquement que les pays développés (parfois appelés pays du Nord). L'expression « pays en développement » remplace des dénominations antérieures, jugées inadéquates, obsolètes ou incorrectes : les pays du tiers monde, les pays sous-développés. Elle s'est substituée à « pays en voie de développement ».
Fonction elliptique de JacobiEn mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi.
Rétroactionvignette|Représentation d'une boucle de rétroaction. La rétroaction (en anglais feedback) est un processus dans lequel un effet intervient aussi comme agent causal sur sa propre origine, la séquence des expressions de la cause principale et des effets successifs formant une boucle de rétroaction. Une rétroaction est une interaction dans laquelle la perturbation d’une variable provoque le changement d'une seconde variable, qui influe à son tour sur la variable initiale. Une rétroaction forme une boucle fermée dans un diagramme de causalité.
MuscleLe muscle est un organe composé de tissu mou retrouvé chez les animaux. Il est composé de tissus musculaires et de tissus conjonctifs (+ vaisseaux sanguins + nerfs). Les cellules musculaires (composant le tissu musculaire) contiennent des filaments protéiques d'actine et de myosine qui glissent les uns sur les autres, produisant une contraction qui modifie à la fois la longueur et la forme de la cellule. Les muscles fonctionnent pour produire de la force et du mouvement.
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Fonction circulaire réciproqueLes fonctions circulaires réciproques, ou fonctions trigonométriques inverses, sont les fonctions réciproques des fonctions circulaires, pour des intervalles de définition précis. Les fonctions réciproques des fonctions sinus, cosinus, tangente, cotangente, sécante et cosécante sont appelées arc sinus, arc cosinus, arc tangente, arc cotangente, arc sécante et arc cosécante. Les fonctions circulaires réciproques servent à obtenir un angle à partir de l'une quelconque de ses lignes trigonométriques, mais aussi à expliciter les primitives de certaines fonctions.
Fonction lemniscatiqueEn mathématiques, les fonctions lemniscatiques sont des fonctions elliptiques liées à la longueur d'arc d'une lemniscate de Bernoulli ; ces fonctions ont beaucoup d'analogies avec les fonctions trigonométriques. Elles ont été étudiées par Giulio Fagnano en 1718 ; leur analyse approfondie, et en particulier la détermination de leurs périodes, a été obtenue par Carl Friedrich Gauss en 1796. Ces fonctions ont un réseau de périodes carré, et sont étroitement reliées à la fonction elliptique de Weierstrass dont les invariants sont g2 = 1 et g3 = 0.