Science des donnéesLa science des données est l'étude de l’extraction automatisée de connaissance à partir de grands ensembles de données. Plus précisément, la science des données est un domaine interdisciplinaire qui utilise des méthodes, des processus, des algorithmes et des systèmes scientifiques pour extraire des connaissances et des idées à partir de nombreuses données structurées ou non . Elle est souvent associée aux données massives et à l'analyse des données.
Imagerie par résonance magnétique fonctionnellethumb|Détection par l'IRMf de l'activation des régions du cerveau impliquées dans la perception visuelle. L’imagerie par résonance magnétique fonctionnelle (IRMf) est une application de l' permettant de visualiser, de manière indirecte, l'activité cérébrale. Il s'agit d'une technique d'imagerie utilisée pour l'étude du fonctionnement du cerveau. Elle consiste à enregistrer des variations hémodynamiques (variation des propriétés du flux sanguin) cérébrales locales minimes, lorsque ces zones sont stimulées.
Module de YoungLe module de Young, module d’élasticité (longitudinale) ou module de traction est la constante qui relie la contrainte de traction (ou de compression) et le début de la déformation d'un matériau élastique isotrope. Dans les ouvrages scientifiques utilisés dans les écoles d'ingénieurs, il a été longtemps appelé module d'Young. Le physicien britannique Thomas Young (1773-1829) avait remarqué que le rapport entre la contrainte de traction appliquée à un matériau et la déformation qui en résulte (un allongement relatif) est constant, tant que cette déformation reste petite et que la limite d'élasticité du matériau n'est pas atteinte.
Explained variationIn statistics, explained variation measures the proportion to which a mathematical model accounts for the variation (dispersion) of a given data set. Often, variation is quantified as variance; then, the more specific term explained variance can be used. The complementary part of the total variation is called unexplained or residual variation. Following Kent (1983), we use the Fraser information (Fraser 1965) where is the probability density of a random variable , and with () are two families of parametric models.
AnalysisAnalysis (: analyses) is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384–322 B.C.), though analysis as a formal concept is a relatively recent development. The word comes from the Ancient Greek ἀνάλυσις (analysis, "a breaking-up" or "an untying;" from ana- "up, throughout" and lysis "a loosening"). From it also comes the word's plural, analyses.
Modèle de donnéesEn informatique, un modèle de données est un modèle qui décrit la manière dont sont représentées les données dans une organisation métier, un système d'information ou une base de données. Le terme modèle de données peut avoir deux significations : Un modèle de données théorique, c'est-à-dire une description formelle ou un modèle mathématique. Voir aussi modèle de base de données Un modèle de données instance, c'est-à-dire qui applique un modèle de données théorique (modélisation des données) pour créer un modèle de données instance.
Analyse (mathématiques)L'analyse (du grec , délier, examiner en détail, résoudre) a pour point de départ la formulation rigoureuse du calcul infinitésimal. C'est la branche des mathématiques qui traite explicitement de la notion de limite, que ce soit la limite d'une suite ou la limite d'une fonction. Elle inclut également des notions comme la continuité, la dérivation et l'intégration. Ces notions sont étudiées dans le contexte des nombres réels ou des nombres complexes.
Loi normaleEn théorie des probabilités et en statistique, les lois normales sont parmi les lois de probabilité les plus utilisées pour modéliser des phénomènes naturels issus de plusieurs événements aléatoires. Elles sont en lien avec de nombreux objets mathématiques dont le mouvement brownien, le bruit blanc gaussien ou d'autres lois de probabilité. Elles sont également appelées lois gaussiennes, lois de Gauss ou lois de Laplace-Gauss des noms de Laplace (1749-1827) et Gauss (1777-1855), deux mathématiciens, astronomes et physiciens qui l'ont étudiée.
Tempsthumb|Chronos, dieu du temps de la mythologie grecque, par Ignaz Günther, Bayerisches Nationalmuseum à Munich. vignette|Montre à gousset ancienne Le temps est une notion qui rend compte du changement dans le monde. Le questionnement s'est porté sur sa « nature intime » : propriété fondamentale de l'Univers, ou produit de l'observation intellectuelle et de la perception humaine. La somme des réponses ne suffit pas à dégager un concept satisfaisant du temps.
Module d'élasticité isostatiqueLe module d'élasticité isostatique () est la constante qui relie la contrainte au taux de déformation d'un matériau isotrope soumis à une compression isostatique. Généralement noté ( en anglais), le module d'élasticité isostatique permet d'exprimer la relation de proportionnalité entre le premier invariant du tenseur des contraintes et le premier invariant du tenseur des déformations : où : est la contrainte isostatique (en unité de pression) ; est le module d'élasticité isostatique (en unité de pression) ; est le taux de déformation isostatique (sans dimension).