Entropie (thermodynamique)L'entropie est une grandeur physique qui caractérise le degré de désorganisation d'un système. Introduite en 1865 par Rudolf Clausius, elle est nommée à partir du grec , littéralement « action de se retourner » pris au sens de « action de se transformer ». En thermodynamique, l'entropie est une fonction d'état extensive (c'est-à-dire, proportionnelle à la quantité de matière dans le système considéré). Elle est généralement notée , et dans le Système international d'unités elle s'exprime en joules par kelvin ().
Équation maîtresseEn physique, une équation maîtresse est une équation différentielle décrivant l'évolution temporelle d'un système. C'est une équation de taux pour les états du système. L'évolution de la probabilité d'être dans l'état discret k suit une équation du type : soit encore sous forme vectorielle La matrice est parfois appelée matrice des taux de transitions. Cette équation se retrouve en mathématique lors des traitements probabilistes des chaînes de Markov.
Entropy (classical thermodynamics)In classical thermodynamics, entropy () is a property of a thermodynamic system that expresses the direction or outcome of spontaneous changes in the system. The term was introduced by Rudolf Clausius in the mid-19th century to explain the relationship of the internal energy that is available or unavailable for transformations in form of heat and work. Entropy predicts that certain processes are irreversible or impossible, despite not violating the conservation of energy.
Entropy productionEntropy production (or generation) is the amount of entropy which is produced during heat process to evaluate the efficiency of the process. Entropy is produced in irreversible processes. The importance of avoiding irreversible processes (hence reducing the entropy production) was recognized as early as 1824 by Carnot. In 1865 Rudolf Clausius expanded his previous work from 1854 on the concept of "unkompensierte Verwandlungen" (uncompensated transformations), which, in our modern nomenclature, would be called the entropy production.
Équation différentielle stochastiqueUne équation différentielle stochastique (EDS) est une généralisation de la notion d'équation différentielle prenant en compte un terme de bruit blanc. Les EDS permettent de modéliser des trajectoires aléatoires, tels des cours de bourse ou les mouvements de particules soumises à des phénomènes de diffusion. Elles permettent aussi de traiter théoriquement ou numériquement des problèmes issus de la théorie des équations aux dérivées partielles.
Équation de LangevinLéquation de Langevin' (1908) est une équation stochastique pour le mouvement brownien. Dans l'approche théorique de Langevin, une grosse particule brownienne de masse m, supposée animée à l'instant t d'une vitesse , est soumise à deux forces bien distinctes : une force de frottement fluide du type , où k est une constante positive. Dans le cas d'une particule sphérique de rayon a, cette constante s'écrit explicitement : (loi de Stokes). une force complémentaire, notée , qui synthétise la résultante des chocs aléatoires des molécules de fluide environnantes.
Coarse-grained modelingCoarse-grained modeling, coarse-grained models, aim at simulating the behaviour of complex systems using their coarse-grained (simplified) representation. Coarse-grained models are widely used for molecular modeling of biomolecules at various granularity levels. A wide range of coarse-grained models have been proposed. They are usually dedicated to computational modeling of specific molecules: proteins, nucleic acids, lipid membranes, carbohydrates or water.
Maximum entropy thermodynamicsIn physics, maximum entropy thermodynamics (colloquially, MaxEnt thermodynamics) views equilibrium thermodynamics and statistical mechanics as inference processes. More specifically, MaxEnt applies inference techniques rooted in Shannon information theory, Bayesian probability, and the principle of maximum entropy. These techniques are relevant to any situation requiring prediction from incomplete or insufficient data (e.g., , signal processing, spectral analysis, and inverse problems).
Dynamique moléculaireLa dynamique moléculaire est une technique de simulation numérique permettant de modéliser l'évolution d'un système de particules au cours du temps. Elle est particulièrement utilisée en sciences des matériaux et pour l'étude des molécules organiques, des protéines, de la matière molle et des macromolécules. En pratique, la dynamique moléculaire consiste à simuler le mouvement d'un ensemble de quelques dizaines à quelques milliers de particules dans un certain environnement (température, pression, champ électromagnétique, conditions aux limites.
Théorème HLe théorème H est un théorème démontré par Boltzmann en 1872 dans le cadre de la théorie cinétique des gaz. Il décrit l'évolution vers l'équilibre thermodynamique d'un gaz satisfaisant à l'équation de Boltzmann et subissant des interactions élastiques. Selon ce théorème, il existe une certaine grandeur qui varie de façon monotone au cours du temps, pendant que le gaz relaxe vers l'état d'équilibre caractérisé par la loi de Maxwell pour les vitesses des particules du milieu. Cette quantité varie à l'opposé de l'entropie thermodynamique.