Strained siliconStrained silicon is a layer of silicon in which the silicon atoms are stretched beyond their normal interatomic distance. This can be accomplished by putting the layer of silicon over a substrate of silicon–germanium (). As the atoms in the silicon layer align with the atoms of the underlying silicon germanium layer (which are arranged a little farther apart, with respect to those of a bulk silicon crystal), the links between the silicon atoms become stretched - thereby leading to strained silicon.
NanofilUn nanofil est une nanostructure, dont le diamètre est exprimé en nanomètre, donc en principe de 1 à 999 nanomètres. Pour plus de simplicité, on tolère un certain débordement dans ces dimensions. Alternativement, les nanofils peuvent être définis comme des structures qui ont une épaisseur ou un diamètre définis, mais d'une longueur quelconque. À ces échelles les effets quantiques sont importants - d'où l'utilisation du terme de « fils quantiques ».
Gaz de FermiUn gaz de Fermi idéal est un état de la matière constitué d'un ensemble de nombreux fermions sans interaction. Les fermions sont des particules ayant un spin demi-entier (1/2, 3/2), comme les électrons, les protons et les neutrons ; la propriété essentielle des fermions est de ne pas pouvoir occuper en même temps le même état quantique, en raison du principe d'exclusion de Pauli.
Antimoniure d'indiumL'antimoniure d'indium (InSb) est un composé semi-conducteur III-V constitué d'antimoine et d'indium. C'est un composé à gap étroit utilisé comme détecteur infrarouge, notamment en imagerie thermique, systèmes FLIR, dans les systèmes de guidage autodirecteur infrarouge et en astronomie infrarouge. Les détecteurs à base d'antimoniure d'indium sont sensibles aux longueurs d'onde comprises entre . Le composé intermétallique a été signalé pour la première fois par Liu et Peretti en 1951, qui ont donné sa plage d'homogénéité, son type de structure et son paramètre cristallin.
Théorie des bandesredresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
Composant semi-conducteurvignette|Aperçu de quelques dispositifs semi-conducteurs encapsulés Un composant semi-conducteur est un composant électronique dont le fonctionnement repose sur les propriétés électroniques d'un matériau semi-conducteur (principalement le silicium, le germanium et l'arséniure de gallium, ainsi que des semi-conducteurs organiques). Sa conductivité se situe entre les conducteurs et les isolants. Les composants semi-conducteurs ont remplacé les tubes à vide dans la plupart des applications.
Nitrurevignette|redresse=1.5|Mèche en acier durcie par un revêtement de nitrure de titane. Les nitrures sont des composés où l'azote est au nombre d'oxydation –III. Ils constituent une large famille dont certains représentants ont des applications concrètes comme le nitrure de titane dont la dureté est mise à profit pour renforcer certains outils. L'ion N est isoélectronique de l'ion oxyde O et de l'ion fluorure F. Il existe des nitrures ioniques ( où M = Be, Mg, Ca) et des nitrures covalents (, ).
Matériauvignette|Grandes classes de matériaux. Les matériaux minéraux sont des roches, des céramiques ou des verres. Les matériaux métalliques sont des métaux ou des alliages. Un matériau est toute matière utilisée pour réaliser un objet au sens large. Ce dernier est souvent une pièce d'un sous-ensemble. C'est donc une matière sélectionnée à l'origine en raison de propriétés particulières et mise en œuvre en vue d'un usage spécifique.
Diode laserUne diode laser est un composant opto-électronique à base de matériaux semi-conducteurs. Elle émet de la lumière monochromatique cohérente (une puissance optique) destinée, entre autres, à transporter un signal contenant des informations sur de longues distances (dans le cas d'un système de télécommunications) ou à apporter de l'énergie lumineuse pour le pompage de certains lasers (lasers à fibre, laser DPSS) et amplificateurs optiques (OFA, Optical Fiber Amplifier).
Microscopie électronique à balayagethumb|right|Premier microscope électronique à balayage par M von Ardenne thumb|right|Microscope électronique à balayage JEOL JSM-6340F thumb|upright=1.5|Principe de fonctionnement du Microscope Électronique à Balayage La microscopie électronique à balayage (MEB) ou scanning electron microscope (SEM) en anglais est une technique de microscopie électronique capable de produire des images en haute résolution de la surface d’un échantillon en utilisant le principe des interactions électrons-matière.