Statistical assumptionStatistics, like all mathematical disciplines, does not infer valid conclusions from nothing. Inferring interesting conclusions about real statistical populations almost always requires some background assumptions. Those assumptions must be made carefully, because incorrect assumptions can generate wildly inaccurate conclusions. Here are some examples of statistical assumptions: Independence of observations from each other (this assumption is an especially common error). Independence of observational error from potential confounding effects.
Marche aléatoireEn mathématiques, en économie et en physique théorique, une marche aléatoire est un modèle mathématique d'un système possédant une dynamique discrète composée d'une succession de pas aléatoires, ou effectués « au hasard ». On emploie également fréquemment les expressions marche au hasard, promenade aléatoire ou random walk en anglais. Ces pas aléatoires sont de plus totalement décorrélés les uns des autres ; cette dernière propriété, fondamentale, est appelée caractère markovien du processus, du nom du mathématicien Markov.
Variance (mathématiques)vignette|Exemple d'échantillons pour deux populations ayant la même moyenne mais des variances différentes. La population en rouge a une moyenne de 100 et une variance de 100 (écart-type = SD = standard deviation = 10). La population en bleu a une moyenne de 100 et une variance de (écart-type = SD = 50). En statistique et en théorie des probabilités, la variance est une mesure de la dispersion des valeurs d'un échantillon ou d'une variable aléatoire.
Statistical mechanicsIn physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Matrice aléatoireEn théorie des probabilités et en physique mathématique, une matrice aléatoire est une matrice dont les éléments sont des variables aléatoires. La théorie des matrices aléatoires a pour objectif de comprendre certaines propriétés de ces matrices, comme leur norme d'opérateur, leurs valeurs propres ou leurs valeurs singulières. Face à la complexité croissante des spectres nucléaires observés expérimentalement dans les années 1950, Wigner a suggéré de remplacer l'opérateur hamiltonien du noyau par une matrice aléatoire.
CatastropheLe terme catastrophe désigne les effets dommageables d'un phénomène brutal, durable ou intense, d'origine naturelle ou humaine. Il vient du grec ancien , « bouleversement, ruine ». Les conséquences de la catastrophe – le fait catastrophique – sont dans la fracture de la continuité organisée et du confort acquis. On distingue tout particulièrement les situations incluant pertes humaines et destructions à grande échelle. La singularité et l'ampleur du désastre que provoquent les grandes catastrophes affectent les esprits des populations concernées.
Infrastructure à clés publiquesthumb|Diagramme de principe d'une autorité de certification, exemple d'infrastructure à clés publiquesCA : autorité de certification ;VA : autorité de validation ;RA : autorité d'enregistrement. Une infrastructure à clés publiques (ICP) ou infrastructure de gestion de clés (IGC) ou encore Public Key Infrastructure (PKI), est un ensemble de composants physiques (des ordinateurs, des équipements cryptographiques logiciels ou matériel type Hardware Security Module (HSM ou boîte noire transactionnelle) ou encore des cartes à puces), de procédures humaines (vérifications, validation) et de logiciels (système et application) destiné à gérer les clés publiques des utilisateurs d'un système.
Loi GammaEn théorie des probabilités et en statistiques, une distribution Gamma ou loi Gamma est un type de loi de probabilité de variables aléatoires réelles positives. La famille des distributions Gamma inclut, entre autres, la loi du χ2 et les distributions exponentielles et la distribution d'Erlang. Une distribution Gamma est caractérisée par deux paramètres k et θ et qui affectent respectivement la forme et l'échelle de la représentation graphique de sa fonction de densité.
Mémoire spatialevignette|La mémoire spatiale est nécessaire pour naviguer dans un environnement. La mémoire spatiale est la partie de la mémoire d'un individu responsable de l'enregistrement des informations concernant l'espace environnant et l'orientation spatiale de l'individu dans celui-ci. La mémoire spatiale est ainsi requise pour la navigation spatiale dans un lieu connu, comme dans un quartier familier. Elle est étudiée en neuroscience (chez le rat) et en psychologie cognitive (chez l'homme).
Modèle de langageEn traitement automatique des langues, un modèle de langage ou modèle linguistique est un modèle statistique de la distribution de symboles distincts (lettres, phonèmes, mots) dans une langue naturelle. Un modèle de langage peut par exemple prédire le mot suivant dans une séquence de mots. Un modèle de langage n-gramme est un modèle de langage qui modélise des séquences de mots comme un processus de Markov. Il utilise l'hypothèse simplificatrice selon laquelle la probabilité du mot suivant dans une séquence ne dépend que d'une fenêtre de taille fixe de mots précédents.