Structure cristallineLa structure cristalline (ou structure d'un cristal) donne l'arrangement des atomes dans un cristal. Ces atomes se répètent périodiquement dans l'espace sous l'action des opérations de symétrie du groupe d'espace et forment ainsi la structure cristalline. Cette structure est un concept fondamental pour de nombreux domaines de la science et de la technologie. Elle est complètement décrite par les paramètres de maille du cristal, son réseau de Bravais, son groupe d'espace et la position des atomes dans l'unité asymétrique la maille.
Cristalvignette|Cristaux. vignette|Cristaux de sel obtenus par cristallisation lente dans une saumure à température ambiante. Un cristal est un solide dont les constituants (atomes, molécules ou ions) sont assemblés de manière régulière, par opposition au solide amorphe. Par « régulier » on veut généralement dire qu'un même motif est répété à l'identique un grand nombre de fois selon un réseau régulier, la plus petite partie du réseau permettant de recomposer l'empilement étant appelée une « maille ».
Système cristallinUn 'système cristallin' est un classement des cristaux sur la base de leurs caractéristiques de symétrie, sachant que la priorité donnée à certains critères plutôt qu'à d'autres aboutit à différents systèmes. La symétrie de la maille conventionnelle permet de classer les cristaux en différentes familles cristallines : quatre dans l'espace bidimensionnel, six dans l'espace tridimensionnel. Une classification plus fine regroupe les cristaux en deux types de systèmes, selon que le critère de classification est la symétrie du réseau ou la symétrie morphologique.
Liaison hydrogènevignette|Liaison hydrogène entre des molécules d'eau. La liaison hydrogène ou pont hydrogène est une force intermoléculaire ou intramoléculaire impliquant un atome d'hydrogène et un atome électronégatif comme l'oxygène, l'azote et le fluor. L'intensité d'une liaison hydrogène est intermédiaire entre celle d'une liaison covalente et celle des forces de van der Waals (en général les liaisons hydrogène sont plus fortes que les interactions de van der Waals).
Cristal liquideUn cristal liquide est un état de la matière qui combine des propriétés d'un liquide ordinaire et celles d'un solide cristallisé. On exprime son état par le terme de « mésophase » ou « état mésomorphe » (du grec « de forme intermédiaire »). La nature de la mésophase diffère suivant la nature et la structure du mésogène, molécule à l'origine de la mésophase, ainsi que des conditions de température, de pression et de concentration. thumb|Rudolf Virchow.
Système cristallin cubiqueEn cristallographie, le système cristallin cubique (ou isométrique) est un système cristallin qui contient les cristaux dont la maille élémentaire est cubique, c'est-à-dire possédant quatre axes ternaires de symétrie. Il existe trois types de telles structures : cubique simple, cubique centrée et cubique à faces centrées. Classe cristalline Le tableau ci-dessous fournit les numéros de groupe d'espace des tables internationales de cristallographie du système cristallin cubique, les noms des classes cristallines, les notations Schoenflies, internationales, et des groupes ponctuels, des exemples, le type et les groupes d'espace.
MonocristalUn monocristal ou matériau monocristallin est un matériau solide constitué d'un unique cristal, formé à partir d’un seul germe. À l'opposé, un polycristal ou matériau polycristallin, est constitué lui d'une multitude de petits cristaux de taille et d'orientation variées. De façon exceptionnelle, on peut en trouver dans la nature, pour le béryl, le quartz, le gypse ; ainsi pour ce dernier la mine de Naica (Mexique) comporte des monocristaux de gypse atteignant treize mètres.
Point groups in three dimensionsIn geometry, a point group in three dimensions is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries. Symmetry groups of geometric objects are isometry groups. Accordingly, analysis of isometry groups is analysis of possible symmetries.
Groupe de papier peintUn groupe de papier peint (ou groupe d'espace bidimensionnel, ou groupe cristallographique du plan) est un groupe mathématique constitué par l'ensemble des symétries d'un motif bidimensionnel périodique. De tels motifs, engendrés par la répétition (translation) à l'infini d'une forme dans deux directions du plan, sont souvent utilisés en architecture et dans les arts décoratifs. Il existe 17 types de groupes de papier peint, qui permettent une classification mathématique de tous les motifs bidimensionnels périodiques.
Icosahedral symmetryIn mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of the icosahedron) and the rhombic triacontahedron. Every polyhedron with icosahedral symmetry has 60 rotational (or orientation-preserving) symmetries and 60 orientation-reversing symmetries (that combine a rotation and a reflection), for a total symmetry order of 120.