Empilement compactUn empilement compact d'une collection d'objets est un agencement de ces objets de telle sorte qu'ils occupent le moins d'espace possible (donc qu'ils laissent le moins de vide possible). Le problème peut se poser dans un espace (euclidien ou non) de dimension n quelconque, les objets étant eux-mêmes de dimension n. Les applications pratiques sont concernées par les cas (plan et autres surfaces) et (espace ordinaire).
Groupe d'espaceLe groupe d'espace d'un cristal est constitué par l'ensemble des symétries d'une structure cristalline, c'est-à-dire l'ensemble des isométries affines laissant la structure invariante. Il s'agit d'un groupe au sens mathématique du terme. Tout groupe d'espace résulte de la combinaison d'un réseau de Bravais et d'un groupe ponctuel de symétrie : toute symétrie de la structure résulte du produit d'une translation du réseau et d'une transformation du groupe ponctuel. La notation de Hermann-Mauguin est utilisée pour représenter un groupe d'espace.
Point groups in two dimensionsIn geometry, a two-dimensional point group or rosette group is a group of geometric symmetries (isometries) that keep at least one point fixed in a plane. Every such group is a subgroup of the orthogonal group O(2), including O(2) itself. Its elements are rotations and reflections, and every such group containing only rotations is a subgroup of the special orthogonal group SO(2), including SO(2) itself. That group is isomorphic to R/Z and the first unitary group, U(1), a group also known as the circle group.
Compacité (cristallographie)En cristallographie, la compacité (ou taux de remplissage) d'un édifice cristallin, dans le modèle des sphères dures, est la fraction volumique des sphères. C'est le taux réel d'occupation de l'espace. On fait généralement le calcul dans une maille (conventionnelle) : où : est la compacité, le volume occupé par les sphères de la maille (pour les sphères dont le centre est situé à la périphérie de la maille, on ne compte que la partie de la sphère incluse dans la maille), le volume de la maille.
Atome d'hydrogèneL'atome d'hydrogène est le plus simple de tous les atomes du tableau périodique, étant composé d'un proton et d'un électron. Il correspond au premier élément de la classification périodique. La compréhension des interactions au sein de cet atome au moyen de la théorie quantique fut une étape importante qui a notamment permis de développer la théorie des atomes à N électrons. C'est pour comprendre la nature de son spectre d'émission, discret, alors que la théorie classique prévoyait un spectre continu, que Niels Bohr a introduit en 1913 un premier modèle quantique de l'atome (cf.
Cryogénievignette|Bonbonne contenant de l'azote liquide (en anglais, « nitrogen »). La cryogénie est l'étude et la production des basses températures (inférieures à ou 120 K) dans le but de comprendre les phénomènes physiques qui s'y manifestent. La limite de représente la limite à partir de laquelle les gaz de l'air se liquéfient. La cryogénie possède de très nombreuses applications notamment dans les secteurs alimentaire, médical, industriel, physique et de l'élevage.
Crystallographic point groupIn crystallography, a crystallographic point group is a set of symmetry operations, corresponding to one of the point groups in three dimensions, such that each operation (perhaps followed by a translation) would leave the structure of a crystal unchanged i.e. the same kinds of atoms would be placed in similar positions as before the transformation.
HydrogénoïdeUn hydrogénoïde ou atome hydrogénoïde est un atome qui a perdu tous ses électrons sauf un, c'est un ion monoatomique, un cation ne possédant qu'un seul électron. Il a alors une structure semblable à celle de l'atome d'hydrogène, hormis la charge de son noyau Ze où Z est le numéro atomique de l'élément chimique, et e la charge élémentaire. La caractéristique essentielle de ces ions est d'avoir un spectre électromagnétique semblable à celui de l'hydrogène et interprétable dans le cadre du modèle de Bohr.
Close-packing of equal spheresIn geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction.
Polymorphisme (chimie)En chimie et minéralogie, le polymorphisme est la faculté que possède une substance chimique de cristalliser dans des structures différentes selon les conditions de température et de pression. Lorsque la substance est un corps simple, on préfère utiliser le terme d'allotropie. Quand une substance peut exister sous plusieurs formes amorphes avec entre elles des transitions de phase du premier ordre, on parle de polyamorphisme. Généralement, chaque structure existe dans une région précise de température et de pression : son « champ de stabilité ».