Optimisation de codeEn programmation informatique, l'optimisation de code est la pratique consistant à améliorer l'efficacité du code informatique d'un programme ou d'une bibliothèque logicielle. Ces améliorations permettent généralement au programme résultant de s'exécuter plus rapidement, de prendre moins de place en mémoire, de limiter sa consommation de ressources (par exemple les fichiers), ou de consommer moins d'énergie électrique. La règle numéro un de l'optimisation est qu'elle ne doit intervenir qu'une fois que le programme fonctionne et répond aux spécifications fonctionnelles.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Overdetermined systemIn mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. An overdetermined system is almost always inconsistent (it has no solution) when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others. The terminology can be described in terms of the concept of constraint counting.
Méthode de HalleyEn analyse numérique, la méthode de Halley est un algorithme de recherche d'un zéro d'une fonction utilisé pour les fonctions d'une variable réelle dérivables deux fois et à dérivée seconde continue (i.e. C2). La méthode, présentée par l'astronome Edmond Halley, est une généralisation de la méthode de Newton, à convergence cubique. Soit f une fonction C2 et a un zéro de f. La méthode de Halley consiste à itérer à partir d'une valeur x0 proche de a. Au voisinage de a, la suite vérifie : avec K > 0 ; ce qui signifie que la convergence est donc (au pire) cubique.