Publication

MATHICSE Technical Report : Quasi-Toeplitz matrix arithmetic : a Matlab toolbox

Stefano Massei
2018
Rapport ou document de travail
Résumé

A Quasi Toeplitz (QT) matrix is a semi-infinite matrix of the kind A=T(a)+EA = T(a) + E whereT(a)=(aji)i,jZ+T(a) = (aj-i)_{i,j\in \mathbb{Z}_{+}}, E=(ei,j)i,jZ+E = (e_{i,j})_{i,j\in\mathbb{Z}_{+}} is compact and the norms aW=iZaj\| a\|_{\mathcal{W}} =\sum_{i\in\mathbb{Z}} |a|_j and E2\|E\|_{2} are finite. These properties allow to approximate any QT-matrix, within any given precision,by means of a finite number of parameters.QT-matrices, equipped with the norm AQT=αaW+E2,for\|A\|_{\mathcal{QT}} = \alpha\|a\|_{\mathcal{W}} + \|E\|_{2}, for \alpha \geq (1 + \sqrt{5})/2$,are a Banach algebra with the standard arithmetic operations. We provide an algorithmicdescription of these operations on the finite parametrization of QT-matrices, and we developa MATLAB toolbox implementing them in a transparent way. The toolbox is then extended toperform arithmetic operations on matrices of finite size that have a Toeplitz plus low-rankstructure. This enables the development of algorithms for Toeplitz and quasi-Toeplitz matriceswhose cost does not necessarily increase with the dimension of the problem.Some examples of applications to computing matrix functions and to solving matrix equa-tions are presented, and confirm the effectiveness of the approach.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.