Dérivée secondeLa dérivée seconde est la dérivée de la dérivée d'une fonction, lorsqu'elle est définie. Elle permet de mesurer l'évolution des taux de variations. Par exemple, la dérivée seconde du déplacement par rapport au temps est la variation de la vitesse (taux de variation du déplacement), soit l'accélération. Si la fonction admet une dérivée seconde, on dit qu'elle est de classe D2 ; si de plus cette dérivée seconde est continue, la fonction est dite de classe C2.
Imagerie par résonance magnétiqueL'imagerie par résonance magnétique (IRM) est une technique d' permettant d'obtenir des vues en deux ou en trois dimensions de l'intérieur du corps de façon non invasive avec une résolution en contraste relativement élevée. L'IRM repose sur le principe de la résonance magnétique nucléaire (RMN) qui utilise les propriétés quantiques des noyaux atomiques pour la spectroscopie en analyse chimique. L'IRM nécessite un champ magnétique puissant et stable produit par un aimant supraconducteur qui crée une magnétisation des tissus par alignement des moments magnétiques de spin.
Generalizations of the derivativeIn mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc. The Fréchet derivative defines the derivative for general normed vector spaces . Briefly, a function , an open subset of , is called Fréchet differentiable at if there exists a bounded linear operator such that Functions are defined as being differentiable in some open neighbourhood of , rather than at individual points, as not doing so tends to lead to many pathological counterexamples.
Pression magnétiqueEn électromagnétisme, la pression magnétique désigne une quantité associée au champ magnétique, s'apparentant dans certaines situations à une force de pression, d'où son nom. La pression magnétique apparaît en magnétohydrodynamique, quand on écrit la version idoine de l'équation d'Euler, c'est-à-dire l'équivalent du principe fondamental de la dynamique appliqué à un élément de fluide soumis à un champ magnétique.
Reconnexion magnétiquedroite|vignette|380px|Reconnexion magnétique: Ce schéma est une coupe à travers quatre domaines magnétiques séparés par une interface propice à un phénomène de reconnexion. Deux séparatrices (voir texte) divisent l'espace en quatre domaines magnétiques avec un point critique (de stagnation) au centre de la figure. Les larges flèches jaunes indiquent le mouvement général du plasma. Les lignes magnétiques et le plasma qui les porte s'écoulent vers le centre à partir du haut (lignes rouges) et du bas (lignes bleues) de l'image, reconnectent au niveau de la zone critique, puis s'évacuent vers l'extérieur à gauche et à droite.
Rémanence (magnétisme)La rémanence, magnétisation rémanente ou magnétisme résiduel, est la magnétisation laissée dans un matériau ferromagnétique (comme le fer) après la suppression d'un champ magnétique externe. Familièrement, lorsqu'un aimant est , il a une rémanence. La rémanence des matériaux magnétiques fournit la mémoire magnétique dans les dispositifs de stockage magnétiques et est utilisée comme source d'informations sur le champ magnétique terrestre passé dans le paléomagnétisme. Le mot rémanence vient de remanent, muni du suffixe -ence, signifiant .
Champ magnétique interplanétairevignette|La nappe de courant héliosphérique le long de la spirale de Parker est la forme prise par le champ magnétique solaire dans le milieu interplanétaire. Le champ magnétique interplanétaire (CMI), également connu sous le nom de champ magnétique de l'héliosphère, est le champ magnétique du Soleil porté par le vent solaire à travers les planètes et autres corps du Système solaire, dans le milieu interplanétaire jusqu'au confins de l'héliosphère. Les modélisations actuelles du CMI lui donnent une forme de spirale, nommée spirale de Parker.
AimantUn aimant permanent, ou simplement aimant dans le langage courant, est un objet fabriqué dans un matériau magnétique dur, c’est-à-dire dont l'aimantation rémanente et le champ coercitif sont grands (voir ci-dessous). Cela lui donne des propriétés particulières liées à l'existence du champ magnétique, comme celle d'exercer une force d'attraction sur tout matériau ferromagnétique. Le mot aimant est, comme le mot diamant, dérivé du grec ancien ἀδάμας, adámas (« fer particulièrement dur ou diamant »), apparenté à l'adjectif ἀδάμαστος, adámastos, (« indomptable »), en raison de la dureté de la pierre d'aimant.
Nombre imaginaire purvignette|Plan des nombres complexes avec les imaginaires purs en bas à droite. thumb|Plan des nombres complexes. Les coordonnées du point A décrivent un nombre réel pur, celles du point B décrivent un nombre imaginaire pur, et celles du point C décrivent un nombre complexe. Un nombre imaginaire pur est un nombre complexe qui s'écrit sous la forme ia avec a réel, i étant l'unité imaginaire. Par exemple, i et −3i sont des imaginaires purs. Ce sont les nombres complexes dont la partie réelle est nulle.
Fréchet derivativeIn mathematics, the Fréchet derivative is a derivative defined on normed spaces. Named after Maurice Fréchet, it is commonly used to generalize the derivative of a real-valued function of a single real variable to the case of a vector-valued function of multiple real variables, and to define the functional derivative used widely in the calculus of variations. Generally, it extends the idea of the derivative from real-valued functions of one real variable to functions on normed spaces.