Théorie de l'estimationEn statistique, la théorie de l'estimation s'intéresse à l'estimation de paramètres à partir de données empiriques mesurées ayant une composante aléatoire. Les paramètres décrivent un phénomène physique sous-jacent tel que sa valeur affecte la distribution des données mesurées. Un estimateur essaie d'approcher les paramètres inconnus à partir des mesures.
Fonctions exécutivesEn psychologie, les fonctions exécutives désignent un ensemble assez hétérogène de processus cognitifs de haut niveau permettant la maîtrise de l'individu par lui-même quand il cherche à atteindre un but ou gérer une situation difficile ou nouvelle. Ces fonctions permettent de faire varier le traitement de l'information et le comportement à chaque instant, en fonction des objectifs du moment, et d'une manière adaptative plutôt que rigide et inflexible.
Opérateur non bornéEn analyse fonctionnelle, un opérateur non borné est une application linéaire partiellement définie. Plus précisément, soient X, Y deux espaces vectoriels. Un tel opérateur est donné par un sous-espace dom(T) de X et une application linéaire dont l'ensemble de définition est dom(T) et l'ensemble d'arrivée est Y. Considérons X = Y = L(R) et l'espace de Sobolev H(R) des fonctions de carré intégrable dont la dérivée au sens des distributions appartient, elle aussi, à L(R).
AutomatiqueL’automatique est une science qui traite de la modélisation, de l’analyse, de l’identification et de la commande des systèmes dynamiques. Elle inclut la cybernétique au sens étymologique du terme, et a pour fondements théoriques les mathématiques, la théorie du signal et l’informatique théorique. L’automatique permet de commander un système en respectant un cahier des charges (rapidité, précision, stabilité...). Les professionnels en automatique se nomment automaticiens.
Programmation fonctionnelleLa programmation fonctionnelle est un paradigme de programmation de type déclaratif qui considère le calcul en tant qu'évaluation de fonctions mathématiques. Comme le changement d'état et la mutation des données ne peuvent pas être représentés par des évaluations de fonctions la programmation fonctionnelle ne les admet pas, au contraire elle met en avant l'application des fonctions, contrairement au modèle de programmation impérative qui met en avant les changements d'état.
Plan d'expériencesOn nomme plan d'expériences (en anglais, design of experiments ou DOE) la suite ordonnée d'essais d'une expérimentation, chacun permettant d'acquérir de nouvelles connaissances en maîtrisant un ou plusieurs paramètres d'entrée pour obtenir des résultats validant un modèle avec une bonne économie de moyens (nombre d'essais le plus faible possible, par exemple). Un exemple classique est le « plan en étoile » où en partant d'un jeu de valeurs choisi pour les paramètres d'un essai central, on complète celui-ci par des essais où chaque fois un seul des facteurs varie « toutes choses égales par ailleurs ».
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Point estimationIn statistics, point estimation involves the use of sample data to calculate a single value (known as a point estimate since it identifies a point in some parameter space) which is to serve as a "best guess" or "best estimate" of an unknown population parameter (for example, the population mean). More formally, it is the application of a point estimator to the data to obtain a point estimate. Point estimation can be contrasted with interval estimation: such interval estimates are typically either confidence intervals, in the case of frequentist inference, or credible intervals, in the case of Bayesian inference.
Structure de contrôleEn programmation informatique, une structure de contrôle est une instruction particulière d'un langage de programmation impératif pouvant dévier le flot de contrôle du programme la contenant lorsqu'elle est exécutée. Si, au plus bas niveau, l'éventail se limite généralement aux branchements et aux appels de sous-programme, les langages structurés offrent des constructions plus élaborées comme les alternatives (if, if–else, switch...), les boucles (while, do–while, for...) ou encore les appels de fonction.
Extensions of symmetric operatorsIn functional analysis, one is interested in extensions of symmetric operators acting on a Hilbert space. Of particular importance is the existence, and sometimes explicit constructions, of self-adjoint extensions. This problem arises, for example, when one needs to specify domains of self-adjointness for formal expressions of observables in quantum mechanics. Other applications of solutions to this problem can be seen in various moment problems. This article discusses a few related problems of this type.