UtilisabilitéL’utilisabilité, ou encore aptitude à l'utilisation est définie par la norme ISO 9241-11 comme « le degré selon lequel un produit peut être utilisé, par des utilisateurs identifiés, pour atteindre des buts définis avec efficacité, efficience et satisfaction, dans un contexte d’utilisation spécifié ». C'est une notion proche de celle d'affordance, ou même d’ergonomie qui est cependant plus large. Les critères de l’utilisabilité sont : l’efficacité : le produit permet à ses utilisateurs d’atteindre le résultat prévu.
Données brutesLes données brutes (aussi connu comme données primaires) sont les données non interprétées émanant d'une source primaire, ayant des caractéristiques liées à celle-ci et qui n'ont été soumises à aucun traitement ou toute autre manipulation. Les données brutes peuvent être entrées dans un programme informatique ou utilisées dans des procédures manuelles telles que l'analyse statistique d'une enquête. Il peut s'agir des données binaires des périphériques de stockage électroniques comme les lecteurs de disque dur.
Loi de probabilitéthumb|400px 3 répartitions.png En théorie des probabilités et en statistique, une loi de probabilité décrit le comportement aléatoire d'un phénomène dépendant du hasard. L'étude des phénomènes aléatoires a commencé avec l'étude des jeux de hasard. Jeux de dés, tirage de boules dans des urnes et jeu de pile ou face ont été des motivations pour comprendre et prévoir les expériences aléatoires. Ces premières approches sont des phénomènes discrets, c'est-à-dire dont le nombre de résultats possibles est fini ou infini dénombrable.
Loi de probabilité à plusieurs variablesvignette|Représentation d'une loi normale multivariée. Les courbes rouge et bleue représentent les lois marginales. Les points noirs sont des réalisations de cette distribution à plusieurs variables. Dans certains problèmes interviennent simultanément plusieurs variables aléatoires. Mis à part les cas particuliers de variables indépendantes (notion définie ci-dessous) et de variables liées fonctionnellement, cela introduit la notion de loi de probabilité à plusieurs variables autrement appelée loi jointe.
Interface utilisateur vocaleUne interface utilisateur vocale ou IUV (ou VUI pour Vocal User Interface en anglais) rend possible l'interaction orale entre les humains et les ordinateurs. Un dispositif de commande vocale (ou VCD pour Voice Command Device) est un appareil doté d'une interface utilisateur vocale. Les ordinateurs équipés d'un tel dispositif utilisent généralement la reconnaissance vocale pour comprendre les mots énoncés par les humains et la synthèse vocale pour en produire.
Processus unifiéLe processus unifié (PU), ou « unified process (UP) » en anglais, ou « Unified Software Development Process (USDP) » est une famille de méthodes de développement de logiciels orientés objets. Elle se caractérise par une démarche itérative et incrémentale, pilotée par les cas d'utilisation, et centrée sur l'architecture et les modèles UML. Elle définit un processus intégrant toutes les activités de conception et de réalisation au sein de cycles de développement composés d'une phase de création, d'une phase d'élaboration, d'une phase de construction et d'une phase de transition, comprenant chacune plusieurs itérations.
Software verification and validationIn software project management, software testing, and software engineering, verification and validation (V&V) is the process of checking that a software system meets specifications and requirements so that it fulfills its intended purpose. It may also be referred to as software quality control. It is normally the responsibility of software testers as part of the software development lifecycle.
Indecomposable distributionIn probability theory, an indecomposable distribution is a probability distribution that cannot be represented as the distribution of the sum of two or more non-constant independent random variables: Z ≠ X + Y. If it can be so expressed, it is decomposable: Z = X + Y. If, further, it can be expressed as the distribution of the sum of two or more independent identically distributed random variables, then it is divisible: Z = X1 + X2. The simplest examples are Bernoulli-distributeds: if then the probability distribution of X is indecomposable.
Loi de probabilité d'entropie maximaleEn statistique et en théorie de l'information, une loi de probabilité d'entropie maximale a une entropie qui est au moins aussi grande que celle de tous les autres membres d'une classe spécifiée de lois de probabilité. Selon le principe d'entropie maximale, si rien n'est connu sur une loi , sauf qu'elle appartient à une certaine classe (généralement définie en termes de propriétés ou de mesures spécifiées), alors la loi avec la plus grande entropie doit être choisie comme la moins informative par défaut.
Théorie des probabilitésLa théorie des probabilités en mathématiques est l'étude des phénomènes caractérisés par le hasard et l'incertitude. Elle forme avec la statistique les deux sciences du hasard qui sont partie intégrante des mathématiques. Les débuts de l'étude des probabilités correspondent aux premières observations du hasard dans les jeux ou dans les phénomènes climatiques par exemple. Bien que le calcul de probabilités sur des questions liées au hasard existe depuis longtemps, la formalisation mathématique n'est que récente.