Fonction quasi-convexeEn mathématiques, une fonction quasi-convexe est une fonction à valeurs réelles, définie sur un ensemble convexe d'un espace vectoriel réel, telle que l' de tout ensemble de la forme est convexe ou encore telle que, sur tout segment, la plus grande valeur de la fonction est atteinte à l'une des extrémités. L'opposée d'une fonction quasi-convexe est dite quasi-concave. Toute fonction convexe est quasi-convexe mais la réciproque est fausse : par exemple, toute fonction monotone sur un intervalle réel est quasi-linéaire, c'est-à-dire à la fois quasi-convexe et quasi-concave.
Algorithme de colonies de fourmisLes algorithmes de colonies de fourmis (, ou ACO) sont des algorithmes inspirés du comportement des fourmis, ou d'autres espèces formant un superorganisme, et qui constituent une famille de métaheuristiques d’optimisation. Initialement proposé par Marco Dorigo dans les années 1990, pour la recherche de chemins optimaux dans un graphe, le premier algorithme s’inspire du comportement des fourmis recherchant un chemin entre leur colonie et une source de nourriture.
Algorithme génétiqueLes algorithmes génétiques appartiennent à la famille des algorithmes évolutionnistes. Leur but est d'obtenir une solution approchée à un problème d'optimisation, lorsqu'il n'existe pas de méthode exacte (ou que la solution est inconnue) pour le résoudre en un temps raisonnable. Les algorithmes génétiques utilisent la notion de sélection naturelle et l'appliquent à une population de solutions potentielles au problème donné.
Conseil (informatique théorique)En théorie de la complexité, un conseil est une entrée supplémentaire passée à une machine de Turing qui dépend de la taille de l'entrée, afin d'aider la machine à reconnaître un langage. Cette notion est introduite par Richard Karp et Richard J. Lipton en 1982. Étant donnés une fonction et une classe de complexité , la classe est l'ensemble des langages tels qu'il existe un langage et une suite de conseils de taille tels que pour toute entrée de taille , si et seulement si .
Optimisation combinatoireL’optimisation combinatoire, (sous-ensemble à nombre de solutions finies de l'optimisation discrète), est une branche de l'optimisation en mathématiques appliquées et en informatique, également liée à la recherche opérationnelle, l'algorithmique et la théorie de la complexité. Dans sa forme la plus générale, un problème d'optimisation combinatoire (sous-ensemble à nombre de solutions finies de l'optimisation discrète) consiste à trouver dans un ensemble discret un parmi les meilleurs sous-ensembles (ou solutions) réalisables, la notion de meilleure solution étant définie par une fonction objectif.
Ensemble convexeUn objet géométrique est dit convexe lorsque, chaque fois qu'on y prend deux points et , le segment qui les joint y est entièrement contenu. Ainsi un cube plein, un disque ou une boule sont convexes, mais un objet creux ou bosselé ne l'est pas. On suppose travailler dans un contexte où le segment reliant deux points quelconques et a un sens (par exemple dans un espace affine sur R — en particulier dans un espace affine sur C — ou dans un ).
Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Méthode de rejetLa méthode du rejet est une méthode utilisée dans le domaine des probabilités. La méthode de rejet est utilisée pour engendrer indirectement une variable aléatoire , de densité de probabilité lorsqu'on ne sait pas simuler directement la loi de densité de probabilité (c'est le cas par exemple si n'est pas une densité classique, mais aussi pour la loi de Gauss). Soit un couple de variables aléatoires indépendantes tirées selon une loi uniforme, i.e. est un point tiré uniformément dans le carré unité.
Informatique théoriquevignette|Une représentation artistique d'une machine de Turing. Les machines de Turing sont un modèle de calcul. L'informatique théorique est l'étude des fondements logiques et mathématiques de l'informatique. C'est une branche de la science informatique et la science formelle. Plus généralement, le terme est utilisé pour désigner des domaines ou sous-domaines de recherche centrés sur des vérités universelles (axiomes) en rapport avec l'informatique.
Pseudoconvex functionIn convex analysis and the calculus of variations, both branches of mathematics, a pseudoconvex function is a function that behaves like a convex function with respect to finding its local minima, but need not actually be convex. Informally, a differentiable function is pseudoconvex if it is increasing in any direction where it has a positive directional derivative. The property must hold in all of the function domain, and not only for nearby points.