Variété algébriqueUne variété algébrique est, de manière informelle, l'ensemble des racines communes d'un nombre fini de polynômes en plusieurs indéterminées. C'est l'objet d'étude de la géométrie algébrique. Les schémas sont des généralisations des variétés algébriques. Il y a deux points de vue (essentiellement équivalents) sur les variétés algébriques : elles peuvent être définies comme des schémas de type fini sur un corps (langage de Grothendieck), ou bien comme la restriction d'un tel schéma au sous-ensemble des points fermés.
Cohomologie cristallineLa cohomologie cristalline est une cohomologie de Weil pour les schémas, introduite par Alexander Grothendieck en 1966 et développée par Pierre Berthelot. Elle étend le domaine d'application de la cohomologie étale en considérant les modules sur les anneaux de vecteurs de Witt sur le corps de base. Conjectures de Weil Dans l'étude des variétés différentiables compactes, la formule de Lefschetz permet de calculer le nombre de points fixes d'un morphisme de la variété dans elle-même.
Gauge theory (mathematics)In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.
Toric varietyIn algebraic geometry, a toric variety or torus embedding is an algebraic variety containing an algebraic torus as an open dense subset, such that the action of the torus on itself extends to the whole variety. Some authors also require it to be normal. Toric varieties form an important and rich class of examples in algebraic geometry, which often provide a testing ground for theorems. The geometry of a toric variety is fully determined by the combinatorics of its associated fan, which often makes computations far more tractable.
Albanese varietyIn mathematics, the Albanese variety , named for Giacomo Albanese, is a generalization of the Jacobian variety of a curve. The Albanese variety is the abelian variety generated by a variety taking a given point of to the identity of . In other words, there is a morphism from the variety to its Albanese variety , such that any morphism from to an abelian variety (taking the given point to the identity) factors uniquely through .
Siegel modular varietyIn mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally polarized abelian varieties of a fixed dimension. They are named after Carl Ludwig Siegel, the 20th-century German number theorist who introduced the varieties in 1943. Siegel modular varieties are the most basic examples of Shimura varieties.
ConjectureEn mathématiques, une conjecture est une assertion pour laquelle on ne connaît pas encore de démonstration, mais que l'on croit fortement être vraie (en l'absence de contre-exemple, ou comme généralisation de résultats démontrés). Une conjecture peut être choisie comme hypothèse ou postulat pour étudier d'autres énoncés. Si une conjecture se révèle indécidable relativement au système d'axiomes dans laquelle elle s'insère, elle peut être érigée en nouvel axiome (ou rejetée par la mise en place d'un nouvel axiome).
Espace de TeichmüllerEn mathématiques, l'espace de Teichmüller d'une surface (réelle) topologique (ou différentielle) , est un espace qui paramétrise des structures complexes sur à l'action des homéomorphismes isotopes à l'identité près. Les espaces Teichmüller portent le nom d'Oswald Teichmüller. Chaque point d'un espace de Teichmüller peut être considérée comme une classe d'isomorphismes de surfaces de Riemann "marquées", où un "marquage" est une classe d'isotopie d'homéomorphismes de sur lui-même.
Nombres premiers entre euxvignette|Le segment ne passe par aucun point du réseau (hormis les points à ses extrémités), ce qui montre que 4 et 9 sont premiers entre eux. En mathématiques, on dit que deux entiers a et b sont premiers entre eux, que a est premier avec b ou premier à b ou encore que a et b sont copremiers (ou encore étrangers) si leur plus grand commun diviseur est égal à 1 ; en d'autres termes, s'ils n'ont aucun diviseur autre que 1 et –1 en commun. De manière équivalente, ils sont premiers entre eux s'ils n'ont aucun facteur premier en commun.
Conjecture de HodgeLa conjecture de Hodge est une des grandes conjectures de la géométrie algébrique. Elle établit un lien entre la topologie algébrique d'une variété algébrique complexe non singulière et sa géométrie décrite par des équations polynomiales qui définissent des sous-variétés. Elle provient d'un résultat du mathématicien W. V. D. Hodge qui, entre 1930 et 1940, a enrichi la description de la cohomologie de De Rham afin d'y inclure des structures présentes dans le cas des variétés algébriques (qui peuvent s'étendre à d'autres cas).