Torelli theoremIn mathematics, the Torelli theorem, named after Ruggiero Torelli, is a classical result of algebraic geometry over the complex number field, stating that a non-singular projective algebraic curve (compact Riemann surface) C is determined by its Jacobian variety J(C), when the latter is given in the form of a principally polarized abelian variety. In other words, the complex torus J(C), with certain 'markings', is enough to recover C. The same statement holds over any algebraically closed field.
Moduli stack of elliptic curvesIn mathematics, the moduli stack of elliptic curves, denoted as or , is an algebraic stack over classifying elliptic curves. Note that it is a special case of the moduli stack of algebraic curves . In particular its points with values in some field correspond to elliptic curves over the field, and more generally morphisms from a scheme to it correspond to elliptic curves over . The construction of this space spans over a century because of the various generalizations of elliptic curves as the field has developed.
Tore algébriqueUn tore algébrique est une construction mathématique qui apparaît dans l'étude des groupes algébriques. Ils constituent l'un des premiers exemples de tels groupes. La notion est due à Armand Borel en 1956, progressivement étendue par Alexandre Grothendieck et pour atteindre sa forme moderne. Les tores algébriques entretiennent d'étroites relations avec la théorie de Lie et les groupes algébriques.
Arithmétique de PresburgerEn logique mathématique, l'arithmétique de Presburger est la théorie du premier ordre des nombres entiers naturels munis de l'addition. Elle a été introduite en 1929 par Mojżesz Presburger. Il s'agit de l'arithmétique de Peano sans la multiplication, c’est-à-dire avec seulement l'addition, en plus du zéro et de l'opération successeur. Contrairement à l'arithmétique de Peano, l'arithmétique de Presburger est décidable. Cela signifie qu'il existe un algorithme qui détermine si un énoncé du langage de l'arithmétique de Presburger est démontrable à partir des axiomes de l'arithmétique de Presburger.
Cryptographie post-quantiqueLa cryptographie post-quantique est une branche de la cryptographie visant à garantir la sécurité de l'information face à un attaquant disposant d'un calculateur quantique. Cette discipline est distincte de la cryptographie quantique, qui vise à construire des algorithmes cryptographiques utilisant des propriétés physiques, plutôt que mathématiques, pour garantir la sécurité. En l'effet, les algorithmes quantiques de Shor, de Grover et de Simon étendent les capacités par rapport à un attaquant ne disposant que d'un ordinateur classique.
Coherent sheafIn mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information. Coherent sheaves can be seen as a generalization of vector bundles. Unlike vector bundles, they form an , and so they are closed under operations such as taking , , and cokernels.
Singular point of an algebraic varietyIn the mathematical field of algebraic geometry, a singular point of an algebraic variety V is a point P that is 'special' (so, singular), in the geometric sense that at this point the tangent space at the variety may not be regularly defined. In case of varieties defined over the reals, this notion generalizes the notion of local non-flatness. A point of an algebraic variety which is not singular is said to be regular. An algebraic variety which has no singular point is said to be non-singular or smooth.
Finite field arithmeticIn mathematics, finite field arithmetic is arithmetic in a finite field (a field containing a finite number of elements) contrary to arithmetic in a field with an infinite number of elements, like the field of rational numbers. There are infinitely many different finite fields. Their number of elements is necessarily of the form pn where p is a prime number and n is a positive integer, and two finite fields of the same size are isomorphic.
Noyau (algèbre)En mathématiques et plus particulièrement en algèbre générale, le noyau d'un morphisme mesure la non-injectivité d'un morphisme. Dans de nombreux cas, le noyau d'un morphisme est un sous-ensemble de l'ensemble de définition du morphisme : l'ensemble des éléments qui sont envoyés sur l'élément neutre de l'ensemble d'arrivée. Dans des contextes plus généraux, le noyau est interprété comme une relation d'équivalence sur l'ensemble de définition : la relation qui relie les éléments qui sont envoyés sur une même par le morphisme.
Canonical bundleIn mathematics, the canonical bundle of a non-singular algebraic variety of dimension over a field is the line bundle , which is the nth exterior power of the cotangent bundle on . Over the complex numbers, it is the determinant bundle of the holomorphic cotangent bundle . Equivalently, it is the line bundle of holomorphic n-forms on . This is the dualising object for Serre duality on . It may equally well be considered as an invertible sheaf.