Mécanique de la ruptureLa catastrophe du Vol 587 American Airlines s'explique par la rupture de la dérive de l'appareil.|vignette La mécanique de la rupture tend à définir une propriété du matériau qui peut se traduire par sa résistance à la rupture fragile (fracture) ou ductile. Car si les structures sont calculées pour que les contraintes nominales ne dépassent pas, en règle générale, la limite d'élasticité du matériau et soient donc par voie de conséquence à l'abri de la ruine par rupture de type ductile ; elles ne sont pas systématiquement à l'abri d'une ruine causée par la présence d'une fissure préexistante à la mise en service ou créée en service par fatigue (comme lors de la catastrophe ferroviaire de Meudon) ou par corrosion sous contrainte.
TénacitéLa ténacité est la capacité d'un matériau à résister à la propagation d'une fissure. On peut aussi définir la ténacité comme étant la quantité d'énergie qu'un matériau peut absorber avant de rompre, mais il s'agit d'une définition anglophone. En anglais, on fait la différence entre « toughness », l'énergie de déformation à rupture par unité de volume (, ce qui correspond aussi à des pascals) et « », la ténacité au sens de résistance à la propagation de fissure.
Rupture (matériau)thumb|Courbe de traction idéale d'un matériau ductile thumb|Courbe de traction typique pour un matériau fragile En science des matériaux, la rupture ou fracture d'un matériau est la séparation, partielle (comme une crique ou une fissure ou une brisure) ou complète, en deux ou plusieurs pièces sous l'action d'une contrainte. Une rupture peut être souhaitée par le concepteur de la pièce comme dans le cas de la conception de dispositifs de sécurité ou au contraire celui-ci cherche à éviter cette rupture en mettant en adéquation la fonction de cette pièce avec les dimensionnements et choix des matériaux utilisés et des procédés de fabrication.
Module d'élasticitéUn module d'élasticité (ou module élastique ou module de conservation) est une grandeur intrinsèque d'un matériau, définie par le rapport d'une contrainte à la déformation élastique provoquée par cette contrainte. Les déformations étant sans dimension, les modules d'élasticité sont homogènes à une pression et leur unité SI est donc le pascal ; en pratique on utilise plutôt un multiple, le ou le . Le comportement élastique d'un matériau homogène isotrope et linéaire est caractérisé par deux modules (ou constantes) d'élasticité indépendants.
Coefficient de PoissonMis en évidence (analytiquement) par Siméon Denis Poisson, le coefficient de Poisson (aussi appelé coefficient principal de Poisson) permet de caractériser la contraction de la matière perpendiculairement à la direction de l'effort appliqué. thumb|upright=1.4|Illustration du coefficient de Poisson. Dans le cas le plus général le coefficient de Poisson dépend de la direction de l'allongement, mais : dans le cas important des matériaux isotropes il en est indépendant ; dans le cas d'un matériau on définit trois coefficients de Poisson (dont deux liés par une relation) ; dans le cas d'un matériau orthotrope on définit deux coefficients de Poisson (liés par une relation) pour chacune des trois directions principales.
Linear elasticityLinear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics. The fundamental "linearizing" assumptions of linear elasticity are: infinitesimal strains or "small" deformations (or strains) and linear relationships between the components of stress and strain. In addition linear elasticity is valid only for stress states that do not produce yielding.
Stress–strain curveIn engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined (see tensile testing). These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength. Generally speaking, curves representing the relationship between stress and strain in any form of deformation can be regarded as stress–strain curves.
Déformation élastiqueEn physique, l'élasticité est la propriété d'un matériau solide à retrouver sa forme d'origine après avoir été déformé. La déformation élastique est une déformation réversible. Un matériau solide se déforme lorsque des forces lui sont appliquées. Un matériau élastique retrouve sa forme et sa taille initiales quand ces forces ne s'exercent plus, jusqu'à une certaine limite de la valeur de ces forces. Les tissus biologiques sont également plus ou moins élastiques. Les raisons physiques du comportement élastique diffèrent d'un matériau à un autre.
OrthotropieL’orthotropie désigne des caractéristiques de symétrie d'un corps, d'une grandeur ou d'un phénomène. Ce terme est utilisé dans plusieurs domaines avec des définitions différentes. L’orthotropie désigne des caractéristiques de symétrie d'un matériau. C’est un cas particulier d’anisotropie. On distingue deux types d'orthotropie : un matériau est orthotrope s'il possède trois plans de symétrie orthogonaux entre eux. Son comportement élastique est alors défini par neuf modules d'élasticité, son comportement thermique par trois constantes thermiques.
Nombre de ReynoldsEn mécanique des fluides, le , noté , est un nombre sans dimension caractéristique de la transition laminaire-turbulent. Il est mis en évidence en par Osborne Reynolds. Le nombre de Reynold est applicable à tout écoulement de fluide visqueux, et prévoit son régime. Pour des petites valeurs de , le régime est dominé par la viscosité et l'écoulement est laminaire. Pour les grandes valeurs de , le régime est dominé par l'inertie et l'écoulement est turbulent.