Publication

Decentralized Nonlinear Model Predictive Control for 3D Formation of Multirotor Micro Aerial Vehicles with Relative Sensing and Estimation

Résumé

In recent years, extensive research is conducted on the coordination and cooperation strategies of multirotor Micro Aerial Vehicles (MAVs) to perform high-level missions such as scientific exploration, search and rescue, intelligence gathering etc. [1], [2]. The main motivator for this interest is the fact that the deployment of multiple vehicles reduces the risk of mission failures and provides higher performance and flexibility through parallelism [3]. Among the main subproblems of cooperative control, formation control is usually an essential component and Model Predictive Control (MPC) is a promising tool to carry out this task deliberately. Since MPC is architecturally flexible and handles the performance and constraints systematically in parallel, it is drawing more attention nowadays [4]. Among MPC methods, especially Nonlinear Model Predictive Control (NMPC) is particularly suitable to control the robots whose fast dynamics are needed to be predicted by nonlinear models and constraints as in multirotor MAVs. Additionally, for large scale systems, Decentralized NMPC (D-NMPC) strategies are advantageous since they address the computational complexity by dividing the overall optimization problem into decoupled subproblems and by reducing communication requirements [4]. Furthermore, in order to deploy highly autonomous multi-rotor MAVs in non-trivial environments, several researchers focus on elaborating local and relative sensing in formation control and try to solve its limitations [5].

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.