Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Bevatronthumb|Bevatron Le Bevatron (Billions of eV [a] Synchrotron) était un accélérateur de particules — plus précisément un synchrotron de proton à focalisation faible — situé au Laboratoire national Lawrence-Berkeley, aux États-Unis. Exploité à partir de 1954, il a permis la découverte de l'antiproton en 1955, entraînant le prix Nobel de physique pour Emilio Gino Segrè et Owen Chamberlain en 1959. Le Bevatron reçut un nouveau souffle en 1971, lorsqu'il fut joint à l'accélérateur linéaire SuperHILAC comme injecteur d'ions lourds.
BarnLe barn (symbole b) est une unité d'aire employée spécialement en physique nucléaire et en physique des particules pour exprimer les sections efficaces. Cette unité se situe en dehors du Système international. Sa valeur est de soit ou . Cette unité est du même ordre de grandeur que la section géométrique du noyau d'un atome, le rayon du proton étant de . Cependant, les valeurs des sections efficaces diffèrent notablement de leurs valeurs géométriques et varient également de façon importante en fonction de la nature, de l'énergie du flux de particules et des interactions qu'elles subissent en traversant le matériau considéré.
Générateur de nombres aléatoires matérielEn informatique, un générateur de nombres aléatoires matériel (aussi appelé générateur de nombres aléatoires physique ; en anglais, hardware random number generator ou true random number generator) est un appareil qui génère des nombres aléatoires à partir d'un phénomène physique, plutôt qu'au moyen d'un programme informatique. De tels appareils sont souvent basés sur des phénomènes microscopiques qui génèrent de faibles signaux de bruit statistiquement aléatoires, tels que le bruit thermique ou l'effet photoélectrique.
Grande unificationEn physique théorique, une théorie de grande unification, encore appelée GUT (pour Grand Unified Theory en anglais) est un modèle de la physique des particules dans lequel les trois interactions de jauge du modèle standard (électromagnétique, nucléaire faible et nucléaire forte) se fusionnent en une seule à hautes énergies. Cette interaction unifiée est caractérisée par une symétrie de jauge plus grande et donc plusieurs vecteurs de force, mais une seule constante de couplage unifiée.
Magnitude absolueEn astronomie, la magnitude absolue indique la luminosité intrinsèque d'un objet céleste, au contraire de la magnitude apparente qui dépend de la distance à l'astre et de l'extinction dans la ligne de visée. Pour un objet situé à l'extérieur du Système solaire, elle est définie par la magnitude apparente qu'aurait cet astre s'il était placé à une distance de référence fixée à 10 parsecs (environ 32,6 années-lumière) en l'absence d'extinction interstellaire.
Brillance de surfaceEn astronomie, la brillance de surface d'un corps céleste étendu comme une galaxie désigne la densité de flux reçue par unité d'angle solide. Elle est souvent mesurée en magnitude par seconde d'arc au carré (). Certains auteurs donnent aussi cette mesure en employant la minute d'arc. Les unités de la brillance de surface sont alors () La mesure de la brillance de surface dans les longueurs d'onde visible, ou dans l'infrarouge, est la photométrie. Le fond du ciel désigne la brillance de surface du ciel.
Constante de couplageEn physique, une constante de couplage est un nombre caractéristique de l'intensité d'une interaction. En physique classique les constantes de couplage interviennent en mécanique et en électromagnétisme : la constante de couplage de deux circuits linéaires, comme l'inductance mutuelle M d'un transformateur. Voir aussi l'article Couplage de deux oscillateurs électriques ; la constante de couplage de deux systèmes mécaniques, souvent notée k, caractérise leur dépendance l'un à l'autre.
MasseEn physique, la masse est une grandeur physique positive intrinsèque d'un corps. On pensait traditionnellement qu'elle était liée à la quantité de matière contenue dans un corps physique, jusqu'à la découverte de l'atome et de la physique des particules. Il a été constaté que différents atomes et différentes particules élémentaires, ayant théoriquement la même quantité de matière, ont néanmoins des masses différentes. En physique newtonienne, c'est une grandeur extensive, c'est-à-dire que la masse d'un corps formé de parties est la somme des masses de ces parties.