Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
MaintenanceLa maintenance vise à maintenir ou à rétablir un bien dans un état spécifié afin que celui-ci soit en mesure d'assurer un service déterminé La maintenance regroupe ainsi les actions de dépannage et de réparation, de réglage, de révision, de contrôle et de vérification des équipements matériels (machines, véhicules, objets manufacturés, etc.) ou même immatériels (logiciels).
Maintenance prévisionnelleLa maintenance prévisionnelle, ou maintenance anticipée (en anglais predictive maintenance), est, selon la norme NF EN 13306 X 60-319 (2018), une . Le principe de la maintenance prévisionnelle est le suivant : tout élément manifeste des signes, visibles ou non, de dégradation qui en annoncent la défaillance. Le tout est de savoir reconnaître ces signes précurseurs. Des appareils permettent de mesurer cette dégradation, laquelle peut être une variation de température, de vibration, de pression, de dimension, de position, de bruit, etc.
Traitement de donnéesEn informatique, le terme traitement de données ou traitement électronique des données renvoie à une série de processus qui permettent d'extraire de l'information ou de produire du savoir à partir de données brutes. Ces processus, une fois programmés, sont le plus souvent automatisés à l'aide d'ordinateurs. Si les résultats finaux produits par ces processus sont destinés à des humains, leur présentation est souvent essentielle pour en apprécier la valeur. Cette appréciation est cependant variable selon les personnes.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Stratégie optionnelleEn finance, une stratégie optionnelle consiste à acheter et/ou vendre plusieurs options (calls et puts) et éventuellement de l'actif sous-jacent, dans le but de bénéficier des mouvements, ou de leur absence, anticipés du marché du sous-jacent ou de celui de la volatilité. Les possibilités n'ont comme limite que l'imagination des acteurs des marchés. Nous n'aborderons ici que les plus courantes à base d'options ordinaires (call et put).