Topological orderIn physics, topological order is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.
AntiferromagnétismeL'antiferromagnétisme est une propriété de certains milieux magnétiques prédite par Louis Néelen 1936. Contrairement aux matériaux ferromagnétiques, dans les matériaux antiferromagnétiques, l’interaction d’échange entre les atomes voisins favorise un alignement antiparallèle des moments magnétiques atomiques. Dans l'état fondamental, les moments magnétiques moyens sur les sous-réseaux distincts peuvent être non-nuls mais se compenser à l'échelle macroscopique. L'aimantation totale du matériau est alors nulle.
Square latticeIn mathematics, the square lattice is a type of lattice in a two-dimensional Euclidean space. It is the two-dimensional version of the integer lattice, denoted as \mathbb{Z}^2. It is one of the five types of two-dimensional lattices as classified by their symmetry groups; its symmetry group in IUC notation as p4m, Coxeter notation as [4,4], and orbifold notation as *442. Two orientations of an image of the lattice are by far the most common.
Integer latticeIn mathematics, the n-dimensional integer lattice (or cubic lattice), denoted \mathbb{Z}^n, is the lattice in the Euclidean space \mathbb{R}^n whose lattice points are n-tuples of integers. The two-dimensional integer lattice is also called the square lattice, or grid lattice. \mathbb{Z}^n is the simplest example of a root lattice. The integer lattice is an odd unimodular lattice. The automorphism group (or group of congruences) of the integer lattice consists of all permutations and sign changes of the coordinates, and is of order 2n n!.
Spin quantum numberIn physics, the spin quantum number is a quantum number (designated s) that describes the intrinsic angular momentum (or spin angular momentum, or simply spin) of an electron or other particle. It has the same value for all particles of the same type, such as s = 1/2 for all electrons. It is an integer for all bosons, such as photons, and a half-odd-integer for all fermions, such as electrons and protons. The component of the spin along a specified axis is given by the spin magnetic quantum number, conventionally written ms.
SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Commutation de paquetsLa commutation de paquets, ou commutation par paquets, ou encore transmission par paquets, est une technique utilisée pour le transfert de données informatiques dans des réseaux spécialisés. Elle existe en deux grandes variantes : les datagrammes (données transmises sans connexions connues dans le réseau), et les circuits virtuels (données transmises avec connexions connues dans le réseau). La commutation par paquets est une méthode de regroupement de données qui sont transmises sur un réseau numérique sous forme de paquets composés d'un en-tête et d'une charge utile.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Nombre quantiqueLes nombres quantiques sont des ensembles de nombres définissant l'état quantique d'un système. Chacun de ces nombres définit la valeur d'une quantité conservée dans la dynamique d'un système quantique. Ce sont des nombres entiers ou demi-entiers, de sorte que les grandeurs observables correspondantes sont quantifiées et ne peuvent prendre que des valeurs discrètes : c'est une différence fondamentale entre la mécanique quantique et la mécanique classique, dans laquelle toutes ces grandeurs peuvent prendre des valeurs continues.
Règle des phasesEn physique, et particulièrement en thermodynamique chimique, la règle des phases (ou règle des phases de Gibbs, ou règle de Gibbs) donne le nombre maximum de paramètres intensifs qu'un opérateur peut fixer librement sans rompre l'équilibre d'un système thermodynamique. Ce nombre de paramètres indépendants est appelé variance. Les paramètres sont choisis le plus souvent parmi la pression, la température et les concentrations des diverses espèces chimiques dans les diverses phases présentes.