Real projective lineIn geometry, a real projective line is a projective line over the real numbers. It is an extension of the usual concept of a line that has been historically introduced to solve a problem set by visual perspective: two parallel lines do not intersect but seem to intersect "at infinity". For solving this problem, points at infinity have been introduced, in such a way that in a real projective plane, two distinct projective lines meet in exactly one point.
Action par conjugaisonEn mathématiques, et plus précisément en théorie des groupes, une action par conjugaison est un cas particulier d'action de groupe. L'ensemble sur lequel agit le groupe G est ici G lui-même. En effet, aut∘aut = aut. Les classes de conjugaison sont utilisées pour la démonstration du théorème de Wedderburn stipulant que tout corps fini est commutatif. Dans le cadre de la théorie des représentations d'un groupe fini, les classes de conjugaison sont à la base de la définition des fonctions centrales d'un groupe fini, elles servent à définir l'espace vectoriel, les caractères des représentations.
Mesure imageEn théorie de la mesure, la mesure image est une mesure définie sur un espace mesurable et transférée sur un autre espace mesurable via une fonction mesurable. On se donne deux espaces mesurables et , une application mesurable et une mesure . La mesure image de μ par f est une mesure sur notée et définie par : Cette définition s'applique également aux mesures complexes signées. La formule de changement de variables est l'une des principales propriétés : Une fonction g sur X est intégrable par rapport à la mesure image fμ si et seulement si la fonction composée g∘ f est intégrable par rapport à la mesure μ.
Espace probabilisé standardIn probability theory, a standard probability space, also called Lebesgue–Rokhlin probability space or just Lebesgue space (the latter term is ambiguous) is a probability space satisfying certain assumptions introduced by Vladimir Rokhlin in 1940. Informally, it is a probability space consisting of an interval and/or a finite or countable number of atoms. The theory of standard probability spaces was started by von Neumann in 1932 and shaped by Vladimir Rokhlin in 1940.
Nombre abondantEn mathématiques, un nombre abondant est un nombre entier naturel non nul qui est strictement inférieur à la somme de ses diviseurs stricts ; autrement dit, c'est un entier n strictement positif tel que : où est la somme des entiers positifs diviseurs de n, cette fois. Exemples : Prenons le nombre 10 : Les diviseurs de 10 sont 1, 2, et 5. La somme 1 + 2 + 5 donne 8. Or 8 est inférieur à 10. Conclusion : 10 n'est donc pas un nombre abondant. Prenons le nombre 12 : Les diviseurs de 12 sont 1, 2, 3, 4, et 6.
Trade-off theory of capital structureThe trade-off theory of capital structure is the idea that a company chooses how much debt finance and how much equity finance to use by balancing the costs and benefits. The classical version of the hypothesis goes back to Kraus and Litzenberger who considered a balance between the dead-weight costs of bankruptcy and the tax saving benefits of debt. Often agency costs are also included in the balance. This theory is often set up as a competitor theory to the pecking order theory of capital structure.
Kleinian groupIn mathematics, a Kleinian group is a discrete subgroup of the group of orientation-preserving isometries of hyperbolic 3-space H3. The latter, identifiable with PSL(2, C), is the quotient group of the 2 by 2 complex matrices of determinant 1 by their center, which consists of the identity matrix and its product by −1. PSL(2, C) has a natural representation as orientation-preserving conformal transformations of the Riemann sphere, and as orientation-preserving conformal transformations of the open unit ball B3 in R3.
Antilinear mapIn mathematics, a function between two complex vector spaces is said to be antilinear or conjugate-linear if hold for all vectors and every complex number where denotes the complex conjugate of Antilinear maps stand in contrast to linear maps, which are additive maps that are homogeneous rather than conjugate homogeneous. If the vector spaces are real then antilinearity is the same as linearity.
Algebraic spaceIn mathematics, algebraic spaces form a generalization of the schemes of algebraic geometry, introduced by Michael Artin for use in deformation theory. Intuitively, schemes are given by gluing together affine schemes using the Zariski topology, while algebraic spaces are given by gluing together affine schemes using the finer étale topology. Alternatively one can think of schemes as being locally isomorphic to affine schemes in the Zariski topology, while algebraic spaces are locally isomorphic to affine schemes in the étale topology.
Tits alternativeIn mathematics, the Tits alternative, named after Jacques Tits, is an important theorem about the structure of finitely generated linear groups. The theorem, proven by Tits, is stated as follows. Let be a finitely generated linear group over a field. Then two following possibilities occur: either is virtually solvable (i.e., has a solvable subgroup of finite index) or it contains a nonabelian free group (i.e., it has a subgroup isomorphic to the free group on two generators).