Inférence causaleL'inférence causale est le processus par lequel on peut établir une relation de causalité entre un élément et ses effets. C'est un champ de recherche à la croisée des statistiques, de l'économétrie, de l'épidémiologie, de la méthodologie politique et de l'intelligence artificielle. En 1920, Sewall Wright développe la première path analysis. Cette analyse graphique des relations de causalité entre les variables constitue selon Judea Pearl un travail pionnier dans l'inférence causale.
Causal modelIn the philosophy of science, a causal model (or structural causal model) is a conceptual model that describes the causal mechanisms of a system. Several types of causal notation may be used in the development of a causal model. Causal models can improve study designs by providing clear rules for deciding which independent variables need to be included/controlled for. They can allow some questions to be answered from existing observational data without the need for an interventional study such as a randomized controlled trial.
Causalitévignette|Exemple classique de la chute d'un domino causé par la chute d'un autre. En science, en philosophie et dans le langage courant, la causalité désigne la relation de cause à effet. la cause, corrélat de l'effet, c'est . C'est ce qui produit l'effet ; la causalité est le . Autrement dit, la causalité est l'influence par laquelle un événement, un processus, un état ou un objet (une cause) contribue à la production d'un autre événement, processus, état ou objet (un effet) considéré comme sa conséquence.
Causal reasoningCausal reasoning is the process of identifying causality: the relationship between a cause and its effect. The study of causality extends from ancient philosophy to contemporary neuropsychology; assumptions about the nature of causality may be shown to be functions of a previous event preceding a later one. The first known protoscientific study of cause and effect occurred in Aristotle's Physics. Causal inference is an example of causal reasoning. Causal relationships may be understood as a transfer of force.
Modèle causal de Neyman-RubinLe modèle causal de Neyman-Rubin (ou modèle à résultats potentiels, en anglais potential outcome model) est un cadre de pensée permettant d'identifier statistiquement l'effet causal d'une variable sur une autre. La première version du modèle a été proposée par Jerzy Neyman en 1923 dans son mémoire de maîtrise. Le modèle a ensuite été généralisé par Donald Rubin dans un article intitulé « ». Le nom du modèle a été donné par Paul Holland dans un article de 1986 intitulé « ». Expérience naturelle Méthode des
Diagramme de boucle causalevignette|308x308px|Exemple de boucle de rétroaction de renforcement : solde bancaire (bank balance) et intérêts perçus (earned interest) Un diagramme de boucle causale (DBC) est un diagramme qui permet de visualiser comment les différentes variables dans un système sont interdépendantes. Le diagramme se compose d'un ensemble de nœuds et d'arcs. Les nœuds représentent les variables et les arcs les connexions, ou liens de causalités, entre les variables.
Causal graphIn statistics, econometrics, epidemiology, genetics and related disciplines, causal graphs (also known as path diagrams, causal Bayesian networks or DAGs) are probabilistic graphical models used to encode assumptions about the data-generating process. Causal graphs can be used for communication and for inference. They are complementary to other forms of causal reasoning, for instance using causal equality notation. As communication devices, the graphs provide formal and transparent representation of the causal assumptions that researchers may wish to convey and defend.
Unique identifierA unique identifier (UID) is an identifier that is guaranteed to be unique among all identifiers used for those objects and for a specific purpose. The concept was formalized early in the development of computer science and information systems. In general, it was associated with an atomic data type. In relational databases, certain attributes of an entity that serve as unique identifiers are called primary keys. In mathematics, set theory uses the concept of element indices as unique identifiers.
Variable latenteIn statistics, latent variables (from Latin: present participle of lateo, “lie hidden”) are variables that can only be inferred indirectly through a mathematical model from other observable variables that can be directly observed or measured. Such latent variable models are used in many disciplines, including political science, demography, engineering, medicine, ecology, physics, machine learning/artificial intelligence, bioinformatics, chemometrics, natural language processing, management, psychology and the social sciences.
Path analysisIn statistics, path analysis is used to describe the directed dependencies among a set of variables. This includes models equivalent to any form of multiple regression analysis, factor analysis, canonical correlation analysis, discriminant analysis, as well as more general families of models in the multivariate analysis of variance and covariance analyses (MANOVA, ANOVA, ANCOVA).