Modèle d'IsingLe modèle d'Ising est un modèle de physique statistique qui a été adapté à divers phénomènes caractérisés par des interactions locales de particules à deux états. L'exemple principal est le ferromagnétisme pour lequel le modèle d'Ising est un modèle sur réseau de moments magnétiques, dans lequel les particules sont toujours orientées suivant le même axe spatial et ne peuvent prendre que deux valeurs. Ce modèle est parfois appelé modèle de Lenz-Ising en référence aux physiciens Wilhelm Lenz et Ernst Ising.
SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Clustering high-dimensional dataClustering high-dimensional data is the cluster analysis of data with anywhere from a few dozen to many thousands of dimensions. Such high-dimensional spaces of data are often encountered in areas such as medicine, where DNA microarray technology can produce many measurements at once, and the clustering of text documents, where, if a word-frequency vector is used, the number of dimensions equals the size of the vocabulary.
InterférenceEn mécanique ondulatoire, les interférences sont la combinaison de deux ondes susceptibles d'interagir. Ce phénomène apparaît souvent en optique avec les ondes lumineuses, mais il s'obtient également avec des ondes électromagnétiques d'autres longueurs d'onde, ou avec d'autres types d'ondes comme des ondes sonores. À savoir aussi, le phénomène d'interférence se produit uniquement lors de la combinaison de deux ondes de même fréquence. L' onde se modélise par une fonction , étant la position dans l'espace et t étant le temps.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Partitionnement de donnéesvignette|upright=1.2|Exemple de clustering hiérarchique. Le partitionnement de données (ou data clustering en anglais) est une méthode en analyse des données. Elle vise à diviser un ensemble de données en différents « paquets » homogènes, en ce sens que les données de chaque sous-ensemble partagent des caractéristiques communes, qui correspondent le plus souvent à des critères de proximité (similarité informatique) que l'on définit en introduisant des mesures et classes de distance entre objets.
Determining the number of clusters in a data setDetermining the number of clusters in a data set, a quantity often labelled k as in the k-means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k-means, k-medoids and expectation–maximization algorithm), there is a parameter commonly referred to as k that specifies the number of clusters to detect.
Aimant monomoléculaireUn aimant monomoléculaire ou nano-aimant moléculaire, appelé aussi SMM, de l'acronyme anglais Single Molecule Magnet, est une molécule faisant partie des composés de coordination qui a un comportement superparamagnétique : c'est un aimant uniquement en dessous d'une certaine température dite de blocage. Les aimants monomoléculaires sont des macromolécules, c'est-à-dire composés de 100 à atomes. Bien que découverts en 1993, nommés en 1996, l'idée du premier aimant monomoléculaire () fut décrite en 1980.
Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Théorie des perturbationsLa théorie des perturbations est un domaine des mathématiques, qui consiste à étudier les contextes où il est possible de trouver une solution approchée à une équation en partant de la solution d'un problème plus simple. Plus précisément, on cherche une solution approchée à une équation (E) (dépendante d'un paramètre λ), sachant que la solution de l'équation (E) (correspondant à la valeur λ=0) est connue exactement. L'équation mathématique (E) peut être par exemple une équation algébrique ou une équation différentielle.