Higher-dimensional gamma matricesIn mathematical physics, higher-dimensional gamma matrices generalize to arbitrary dimension the four-dimensional Gamma matrices of Dirac, which are a mainstay of relativistic quantum mechanics. They are utilized in relativistically invariant wave equations for fermions (such as spinors) in arbitrary space-time dimensions, notably in string theory and supergravity. The Weyl–Brauer matrices provide an explicit construction of higher-dimensional gamma matrices for Weyl spinors.
Groupe de CoxeterUn groupe de Coxeter est un groupe engendré par des réflexions sur un espace. Les groupes de Coxeter se retrouvent dans de nombreux domaines des mathématiques et de la géométrie. En particulier, les groupes diédraux, ou les groupes d'isométries de polyèdres réguliers, sont des groupes de Coxeter. Les groupes de Weyl sont d'autres exemples de groupes de Coxeter. Ces groupes sont nommés d'après le mathématicien H.S.M. Coxeter. Un groupe de Coxeter est un groupe W ayant une présentation du type: où est à valeurs dans , est symétrique () et vérifie , si .
Fonction gammaEn mathématiques, la fonction gamma (notée par Γ la lettre grecque majuscule gamma de l'alphabet grec) est une fonction utilisée communément, qui prolonge de la fonction factorielle à l'ensemble des nombres complexes. En ce sens, il s'agit une fonction complexe. Elle est considérée également comme une fonction spéciale. La fonction gamma est défini pour tous les nombres complexes, à l'exception des entiers négatifs. On a pour tout entier strictement positif, où est la factorielle de , c'est-à-dire le produit des entiers entre 1 et : .
Histoire des notations mathématiquesLhistoire des notations mathématiques décrit les débuts, les progrès et la diffusion culturelle des symboles mathématiques et les conflits entre méthodes de notation qui ont mené à leur généralisation ou leur marginalisation. La notation mathématique comprend les symboles utilisés pour écrire des équations et formules mathématiques. La notation implique généralement un ensemble de représentations de quantités et d'opérateurs symboliques.
Histoire des mathématiquesL’histoire des mathématiques s'étend sur plusieurs millénaires et dans de nombreuses régions du globe allant de la Chine à l’Amérique centrale. Jusqu'au , le développement des connaissances mathématiques s’effectue essentiellement de façon cloisonnée dans divers endroits du globe. À partir du et surtout au , le foisonnement des travaux de recherche et la mondialisation des connaissances mènent plutôt à un découpage de cette histoire en fonction des domaines mathématiques.
Rayon gammavignette|Des rayons gamma sont produits par des processus nucléaires énergétiques au cœur des noyaux atomiques. Un rayon gamma (ou rayon γ) est un rayonnement électromagnétique à haute fréquence émis lors de la désexcitation d'un noyau atomique résultant d'une désintégration. Les photons émis sont caractérisés par des énergies allant de quelques keV à plusieurs centaines de GeV voire jusqu'à pour le plus énergétique jamais observé. Les rayons gamma furent découverts en 1900 par Paul Villard, chimiste français.
Graphe sommet-transitifEn théorie des graphes, un graphe non-orienté est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième. De manière informelle cette propriété indique que tous les sommets jouent exactement le même rôle à l'intérieur du graphe. Un graphe est sommet-transitif si pour tout couple de sommets, il existe un automorphisme de graphe qui envoie le premier sommet sur le deuxième.
Intégration par partiesEn mathématiques, l'intégration par parties (parfois abrégée en IPP) est une méthode qui permet de transformer l'intégrale d'un produit de fonctions en d'autres intégrales. Elle est fréquemment utilisée pour calculer une intégrale (ou une primitive) d'un produit de fonctions. Cette formule peut être considérée comme une version intégrale de la règle du produit. Le mathématicien Brook Taylor a découvert l'intégration par parties, publiant d'abord l'idée en 1715.
Droits des ÉtatsDans la politique aux États-Unis, le terme « droits des États » (states' rights) fait référence à la souveraineté individuelle des gouvernements des États américains vis-à-vis de l'État fédéral. La répartition des pouvoirs est déterminée par la Constitution, reflétant notamment les pouvoirs énumérés du Congrès et le Dixième amendement. La question des droits des États fut l'un des principaux arguments négationnistes du mouvement néo-confédéré, qui a cherché à légitimer a posteriori la « Cause perdue » de la Confédération, en niant le fait que l'esclavage fut la cause principale de la guerre de Sécession.
GammaGamma (capitale Γ, minuscule γ ; en grec γάμμα), est la lettre de l'alphabet grec. Dérivée de la lettre gaml x12px de l'alphabet phénicien, elle est l'ancêtre des lettres C, G, Ɣ (gamma) de l'alphabet latin, et de la lettre Г de l'alphabet cyrillique. En grec ancien, gamma représente la consonne occlusive vélaire voisée . En grec moderne, elle représente une consonne fricative voisée. Elle est réalisée soit comme une palatale (devant une voyelle antérieure, /e, i/), soit une vélaire (dans les autres cas).