Concept

Intégration par parties

Résumé
En mathématiques, l'intégration par parties (parfois abrégée en IPP) est une méthode qui permet de transformer l'intégrale d'un produit de fonctions en d'autres intégrales. Elle est fréquemment utilisée pour calculer une intégrale (ou une primitive) d'un produit de fonctions. Cette formule peut être considérée comme une version intégrale de la règle du produit. Le mathématicien Brook Taylor a découvert l'intégration par parties, publiant d'abord l'idée en 1715. Des formulations plus générales d'intégration par parties existent pour l'intégrale de Riemann-Stieltjes et pour l'intégrale de Lebesgue-Stieltjes. L'analogue discret pour les suites est appelé sommation par parties. Énoncé type La formule-type est la suivante, où u et v sont deux fonctions dérivables, de dérivées continues et a et b deux réels de leur intervalle de définition : :\begin{align} \int_a^b u(x) v'(x) , dx & = \Big[u(x)
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement