Loi de DarcyLa loi de Darcy est une loi physique qui exprime le débit d'un fluide incompressible filtrant au travers d'un milieu poreux. La circulation de ce fluide entre deux points est déterminée par la conductivité hydraulique ou le coefficient de perméabilité du substrat et par le gradient de pression du fluide. Dans le cas d'un cours d'eau ou d'un réservoir alimentant une nappe, ce gradient est lié à la hauteur de l'eau. Cette loi a été établie en 1856 par Henry Darcy, après qu'il eut réalisé diverses expérimentations visant à déterminer les lois régissant .
Escalier de CantorL'escalier de Cantor, ou l'escalier du diable, est le graphe d'une fonction f continue croissante sur [0, 1], telle que f(0) = 0 et f(1) = 1, qui est dérivable presque partout, la dérivée étant presque partout nulle. Il s'agit cependant d'une fonction continue, mais pas absolument continue. Soit f une fonction continue sur un intervalle I ⊂ R, de dérivée math|f '''. Si f ' est nulle sur I, alors f est constante. C'est une conséquence immédiate du théorème des accroissements finis.
Test de RorschachLe test de Rorschach ou psychodiagnostic de Rorschach est un outil de l'évaluation psychologique de type projectif élaboré par le psychanalyste Hermann Rorschach en 1921. Il consiste en une série de planches graphiques présentant des taches symétriques a priori non figuratives qui sont proposées à la libre interprétation de la personne évaluée. Analysées par la personne administrant le test, les réponses fournies servent à évaluer la personnalité du sujet.
Absolue continuitéEn mathématiques, et plus précisément en analyse, on définit, pour des fonctions définies sur un intervalle borné, la notion de fonction absolument continue, un peu plus forte que la notion de fonction uniformément continue, et garantissant de bonnes propriétés d'intégration ; on lui associe d'ailleurs la notion de mesure absolument continue. Le premier théorème fondamental de l'analyse a pour conséquence que toute fonction continue sur un intervalle réel est égale à la dérivée de sa fonction intégrale (au sens de Riemann) définie par .
Asymétrie d'informationUne asymétrie d'information est une situation où, sur un marché, les agents économiques qui contractent ou échangent ne sont pas sur un pied d'égalité en termes d'informations, l'un des deux agents détenant une information que l'autre n'a pas. La présence d'asymétries d'information conduit à des problèmes d'anti-sélection et de risque moral. Ils sont notamment étudiés dans le cadre de la théorie des contrats et de la théorie des mécanismes d'incitation.
MagnétohydrodynamiqueLa magnétohydrodynamique (MHD) est une discipline scientifique qui décrit le comportement d'un fluide conducteur du courant électrique en présence de champs électromagnétiques. Elle s'applique notamment aux plasmas, au noyau externe et même à l'eau de mer. C'est une généralisation de l'hydrodynamique (appelée plus communément dynamique des fluides, définie par les équations de Navier-Stokes) couplée à l'électromagnétisme (équations de Maxwell).
Dynamique des fluidesLa dynamique des fluides (hydrodynamique ou aérodynamique), est l'étude des mouvements des fluides, qu'ils soient liquides ou gazeux. Elle fait partie de la mécanique des fluides avec l'hydrostatique (statique des fluides). La résolution d'un problème de dynamique des fluides demande de calculer diverses propriétés des fluides comme la vitesse, la viscosité, la densité, la pression et la température en tant que fonctions de l'espace et du temps.
Hydrodynamique des particules lisséesL'hydrodynamique des particules lissées, en anglais Smoothed particle hydrodynamics (SPH), est une méthode de calcul utilisée pour simuler la mécanique des milieux continus, comme la mécanique des solides ou les écoulements de fluides. Elle a été développée par Gingold, Monaghan et Lucy en 1977, initialement pour des problèmes d'astrophysique. Elle a été utilisée dans de nombreux domaines de recherche, incluant l'astrophysique, la balistique, la volcanologie et océanologie.
Théorie des jeuxLa théorie des jeux est un domaine des mathématiques qui propose une description formelle d'interactions stratégiques entre agents (appelés « joueurs »). Les fondements mathématiques de la théorie moderne des jeux sont décrits autour des années 1920 par Ernst Zermelo dans l'article , et par Émile Borel dans l'article . Ces idées sont ensuite développées par Oskar Morgenstern et John von Neumann en 1944 dans leur ouvrage qui est considéré comme le fondement de la théorie des jeux moderne.