Type (informatique)vignette|Présentation des principaux types de données. En programmation informatique, un type de donnée, ou simplement un type, définit la nature des valeurs que peut prendre une donnée, ainsi que les opérateurs qui peuvent lui être appliqués. La plupart des langages de programmation de haut niveau offrent des types de base correspondant aux données qui peuvent être traitées directement — à savoir : sans conversion ou formatage préalable — par le processeur.
Type algébrique de donnéesUn type algébrique est une forme de type de données composite, qui combine les fonctionnalités des types produits (n‐uplets ou enregistrements) et des types sommes (union disjointe). Combinée à la récursivité, elle permet d’exprimer les données structurées telles que les listes et les arbres. Le type produit de deux types A et B est l’analogue en théorie des types du produit cartésien ensembliste et est noté A × B. C’est le type des couples dont la première composante est de type A et la seconde de type B.
HaxeHaxe est le nom d'un langage de programmation, multi-paradigme, multiplate-forme, haut niveau et celui d'un compilateur utilisé pour produire des applications pour de nombreuses plates-formes différentes à partir d'un seul code source. C'est aussi le nom d'un logiciel gratuit et open source distribué sous la licence GPLv2. La bibliothèque standard est disponible sous la licence MIT. Haxe inclut un ensemble de fonctions communes qui sont supportées sur toutes les plates-formes, tels que les types de données numériques, textuelles, tabulaires et binaires ainsi que certains formats de fichier communs.
Idris (programming language)Idris is a purely-functional programming language with dependent types, optional lazy evaluation, and features such as a totality checker. Idris may be used as a proof assistant, but is designed to be a general-purpose programming language similar to Haskell. The Idris type system is similar to Agda's, and proofs are similar to Coq's, including tactics (theorem proving functions/procedures) via elaborator reflection. Compared to Agda and Coq, Idris prioritizes management of side effects and support for embedded domain-specific languages.
OCamlOCaml, anciennement connu sous le nom d'Objective Caml, est l'implémentation la plus avancée du langage de programmation Caml, créé par Xavier Leroy, Jérôme Vouillon, , Didier Rémy et leurs collaborateurs en 1996. Ce langage, de la famille des langages ML, est un projet open source dirigé et maintenu essentiellement par l'Inria. OCaml est le successeur de Caml Light, auquel il a ajouté entre autres une couche de programmation objet.
Type dépendantEn Informatique et en Logique, un type dépendant est un type qui peut dépendre d'une valeur définie dans le langage typé. Les langages Agda et Gallina (de l'assistant de preuve Coq) sont des exemples de langages à type dépendant. Les types dépendants permettent par exemple de définir le type des listes à n éléments. Voici un exemple en Coq. Inductive Vect (A: Type): nat -> Type := | nil: Vect A 0 | cons (n: nat) (x: A) (t: Vect A n): Vect A (S n).
Théorie des typesEn mathématiques, logique et informatique, une théorie des types est une classe de systèmes formels, dont certains peuvent servir d'alternatives à la théorie des ensembles comme fondation des mathématiques. Ils ont été historiquement introduits pour résoudre le paradoxe d'un axiome de compréhension non restreint. En théorie des types, il existe des types de base et des constructeurs (comme celui des fonctions ou encore celui du produit cartésien) qui permettent de créer de nouveaux types à partir de types préexistant.
Système FLe est un formalisme logique qui permet d'exprimer de façon très riche et très rigoureuse des fonctions et d'y démontrer formellement des propriétés difficiles. Plus précisément, le (également connu sous le nom de lambda-calcul polymorphe ou de lambda-calcul du second ordre) est une extension du lambda-calcul simplement typé introduite indépendamment par le logicien Jean-Yves Girard et par l'informaticien John C. Reynolds. Ce système se distingue du lambda-calcul simplement typé par l'existence d'une quantification universelle sur les types qui permet d'exprimer du polymorphisme.
Système formelUn système formel est une modélisation mathématique d'un langage en général spécialisé. Les éléments linguistiques, mots, phrases, discours, etc., sont représentés par des objets finis (entiers, suites, arbres ou graphes finis...). Le propre d'un système formel est que la correction au sens grammatical de ses éléments est vérifiable algorithmiquement, c'est-à-dire que ceux-ci forment un ensemble récursif.
Langage formelUn langage formel, en mathématiques, en informatique et en linguistique, est un ensemble de mots. L'alphabet d'un langage formel est l'ensemble des symboles, lettres ou lexèmes qui servent à construire les mots du langage ; souvent, on suppose que cet alphabet est fini. La théorie des langages formels a pour objectif de décrire les langages formels. Les mots sont des suites d'éléments de cet alphabet ; les mots qui appartiennent à un langage formel particulier sont parfois appelés mots bien formés ou formules bien formées.