Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The rise of data-intensive applications has resulted in an increasing demand for high-density and low-power on-chip embedded memories. Gain-cell embedded DRAM (GC-eDRAM) is a logic-compatible alternative to conventional static random access memory (SRAM) which offers higher density, lower leakage power, and two-ported operation. However, in order to maintain the stored data, GC-eDRAM requires periodic refresh cycles, which are determined according to the worst-case data retention time (DRT) across process, voltage and temperature (PVT) variations. Even though several DRT characterization methodologies have been reported in literature, they often require unfeasible run-times for accurate DRT evaluation, or they result in highly pessimistic design margins due to their inaccuracy. In this work, we propose an current-based DRT (IDRT) characterization methodology that enables accurate DRT evaluation across process variations without the need for a large number of costly electronic design automation (EDA) software licenses. The presented approach is compared with other DRT characterization methodologies for both accuracy and run-time across several gain-cell structures at different process technologies, providing less than a 4% DRT error and over 100x shorter run-time compared to a conventional DRT evaluation methodology.
Andreas Peter Burg, Robert Giterman, Halil Andac Yigit, Emmanuel Nieto Casarrubias
Adam Shmuel Teman, Robert Giterman