Force Adaptation in Contact Tasks with Dynamical Systems
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
We discuss the adaptive behaviour of a collection of heterogeneous dynamical systems interacting via a weighted network. At each vertex, the network is endowed with a dynamical system with individual (initially different) control parameters governing the l ...
Despite tremendous advances in robotics, we are still amazed by the proficiency with which humans perform movements. Even new waves of robotic systems still rely heavily on hardcoded motions with a limited ability to react autonomously and robustly to a dy ...
This paper presents a novel approach to real-time obstacle avoidance based on dynamical systems (DS) that ensures impenetrability of multiple convex shaped objects. The proposed method can be applied to perform obstacle avoidance in Cartesian and Joint spa ...
This paper presents a method for learning discrete robot motions from a set of demonstrations. We model a motion as a nonlinear autonomous (i.e. time-invariant) Dynamical System (DS), and define sufficient conditions to ensure global asymptotic stability a ...
Abstract The paper presents a two-layered system for (1) learning and encoding a periodic signal without any knowledge on its frequency and waveform, and (2) modulating the learned periodic trajectory in response to external events. The system is used to l ...
The present work belongs to the vast body of research devoted to behaviors that emerge when homogeneous or heterogeneous agents interact. We adopt a stylized point of view in which the individual agents' activities can be assimilated into nonlinear dynamic ...
Leg dynamics and control have been widely studied using mass-spring systems such as the Spring Loaded Inverted Pendulum (SLIP) model [1]. The SLIP model is commonly accepted as the simplest model that resembles leg dynamics. While simplicity facilitates th ...
Direct transfer of human motion trajectories to humanoid robots does not result in dynamically stable robot movements due to the differences in human and humanoid robot kinematics and dynamics. We developed a system that converts human movements captured b ...
Transferring skills from a biological organism to a hyper-redundant system is a challenging task, especially when the two agents have very different structure/embodiment and evolve in different environments. In this article we propose to address this probl ...
Non-linear dynamical systems (DS) have been used extensively for building generative models of human behavior. Their applications range from modeling brain dynamics to encoding motor commands. Many schemes have been proposed for encoding robot motions usin ...