Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
DonnéeUne donnée est ce qui est connu et qui sert de point de départ à un raisonnement ayant pour objet la détermination d'une solution à un problème en relation avec cette donnée. Cela peut être une description élémentaire qui vise à objectiver une réalité, le résultat d'une comparaison entre deux événements du même ordre (mesure) soit en d'autres termes une observation ou une mesure. La donnée brute est dépourvue de tout raisonnement, supposition, constatation, probabilité.
BiomathématiqueLa biomathématique est le domaine d'étude qui réunit la biologie et les mathématiques. De façon précise les biomathématiques sont constituées par l'ensemble des méthodes et techniques mathématiques, numériques et informatiques qui permettent d'étudier et de modéliser les phénomènes et processus biologiques. Il s'agit donc bien d'une science fortement pluridisciplinaire que le mathématicien seul (ou le biologiste seul) est incapable de développer. Pour naître et vivre cette discipline exige des équipes interdisciplinaires mues par le sens du concret.
Calcul par réservoirLe calcul par réservoir (de l'anglais reservoir computing) est un cadre de calcul dérivé de la théorie des réseaux de neurones récurrents qui mappe un ou plusieurs signaux d'entrée dans des espaces de calcul de dimension supérieure grâce à la dynamique d'un système fixe et non linéaire appelé réservoir . Une fois que le signal d'entrée est introduit dans le réservoir, qui est traité comme une « boîte noire », un simple mécanisme de lecture est entraîné pour lire l'état du réservoir et le mapper à la sortie souhaitée.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Critical period hypothesisThe critical period hypothesis or sensitive period hypothesis claims that there is an ideal time window of brain development to acquire language in a linguistically rich environment, after which further language acquisition becomes much more difficult and effortful. It is the subject of a long-standing debate in linguistics and language acquisition over the extent to which the ability to acquire language is biologically linked to age.
Object–relational impedance mismatchObject–relational impedance mismatch creates difficulties going from data in relational data stores (relational database management system [“RDBMS”]) to usage in domain-driven object models. Object-orientation (OO) is the default method for business-centric design in programming languages. The problem lies in neither relational nor OO, but in the conceptual difficulty mapping between the two logic models. Both are logical models implementable differently on database servers, programming languages, design patterns, or other technologies.
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Automobile hybride électriqueUne automobile hybride électrique est un véhicule automobile faisant appel à deux types d'énergie embarqués pour se mouvoir, dont l'un est de nature électrique (électrochimique ou électrostatique). L'architecture la plus répandue pour ce type de véhicule hybride associe un moteur électrique à un moteur thermique, généralement à essence. La nature réversible de la partie motrice électrique permet la récupération d'une partie de l'énergie cinétique du véhicule par freinage régénératif.