Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
This paper deals with the kernel-based approximation of a multivariate periodic function by interpolation at the points of an integration lattice---a setting that, as pointed out by Zeng, Leung, Hickernell (MCQMC2004, 2006) and Zeng, Kritzer, Hickernell (Constr. Approx., 2009), allows fast evaluation by fast Fourier transform, so avoiding the need for a linear solver. The main contribution of the paper is the application to the approximation problem for uncertainty quantification of elliptic partial differential equations, with the diffusion coefficient given by a random field that is periodic in the stochastic variables, in the model proposed recently by Kaarnioja, Kuo, Sloan (SIAM J. Numer. Anal., 2020). The paper gives a full error analysis, and full details of the construction of lattices needed to ensure a good (but inevitably not optimal) rate of convergence and an error bound independent of dimension. Numerical experiments support the theory.
Martin Alois Rohrmeier, Johannes Hentschel, Gabriele Cecchetti, Sabrina Laneve, Ludovica Schaerf
, , , ,
Till Junge, Ali Falsafi, Martin Ladecký