Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
3D temps réelvignette|Rendu VR d'une rivière en 2000. La 3D temps réel qui concerne l'imagerie de synthèse, est une méthode de représentation de données tri-dimensionnelles pour laquelle chaque image composant l'animation est rendue dans l'instant qui précède son affichage. La 3D temps réel ne doit pas être confondue avec les effets stéréoscopiques (relief en trois dimensions, même s'il est possible de faire de la 3D temps réel en relief), ni avec un système temps réel pour lequel le respect des contraintes temporelles et au moins aussi important que le résultat.
Réseau informatiquethumb|upright|Connecteurs RJ-45 servant à la connexion des réseaux informatiques via Ethernet. thumb|upright Un réseau informatique ( ou DCN) est un ensemble d'équipements reliés entre eux pour échanger des informations. Par analogie avec un (un réseau est un « petit rets », c'est-à-dire un petit filet), on appelle nœud l'extrémité d'une connexion, qui peut être une intersection de plusieurs connexions ou équipements (un ordinateur, un routeur, un concentrateur, un commutateur).
Transformeurvignette|Schéma représentant l'architecture générale d'un transformeur. Un transformeur (ou modèle auto-attentif) est un modèle d'apprentissage profond introduit en 2017, utilisé principalement dans le domaine du traitement automatique des langues (TAL). Dès 2020, les transformeurs commencent aussi à trouver une application en matière de vision par ordinateur par la création des vision transformers (ViT).
Architecture cognitiveUne architecture cognitive est un processus calculatoire artificiel qui tente de simuler le comportement d'un système cognitif (généralement celui d'un humain), ou qui agit intelligemment sous respect d'une certaine définition. Le terme architecture implique une approche qui tente de modéliser les propriétés internes du système cognitif représenté et non seulement le comportement extérieur. Les prochaines sous-sections présentent plusieurs critères pour catégoriser les architectures cognitives.
Rythme cérébralUn rythme cérébral (appelé aussi activité neuro-électrique) désigne l'oscillation électromagnétique émise par le cerveau des êtres humains, mais également de tout être vivant. Le cortex frontal qui permet la cognition, la logique et le raisonnement est composé de neurones qui sont reliés entre eux par des synapses permettant la neurotransmission. Mesurables en volt et en hertz, ces ondes sont de très faible amplitude : de l'ordre du microvolt (chez l'être humain), elles ne suivent pas toujours une sinusoïde régulière.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Rendu volumique directLe rendu volumique direct est une technique utilisée pour afficher une projection 2D d'une série de données 3D. Le rendu volumique direct nécessite que chaque valeur échantillonnée au sein du volume soit associée à une opacité et une couleur. Mathématiquement, cela revient à dire qu'on dispose d'une fonction de transfert : où est la région de l'espace où la fonction est définie, et est l'espace de couleurs utilisé (par exemple ou si les couleurs sont définies par leurs valeurs RGB).
Bidirectional scattering distribution functionThe definition of the BSDF (bidirectional scattering distribution function) is not well standardized. The term was probably introduced in 1980 by Bartell, Dereniak, and Wolfe. Most often it is used to name the general mathematical function which describes the way in which the light is scattered by a surface. However, in practice, this phenomenon is usually split into the reflected and transmitted components, which are then treated separately as BRDF (bidirectional reflectance distribution function) and BTDF (bidirectional transmittance distribution function).
Big dataLe big data ( « grosses données » en anglais), les mégadonnées ou les données massives, désigne les ressources d’informations dont les caractéristiques en termes de volume, de vélocité et de variété imposent l’utilisation de technologies et de méthodes analytiques particulières pour créer de la valeur, et qui dépassent en général les capacités d'une seule et unique machine et nécessitent des traitements parallélisés. L’explosion quantitative (et souvent redondante) des données numériques permet une nouvelle approche pour analyser le monde.