Quasi-particuleLes quasi-particules, ou quasiparticules, sont des entités conçues comme des particules et facilitant la description des systèmes de particules, particulièrement en physique de la matière condensée. Parmi les plus connues, on distingue les trous d'électrons qui peuvent être vus comme un "manque d'électron", et les phonons, qui décrivent des "paquets de vibration". Les solides sont formés de trois types de particules : les électrons, les protons et les neutrons.
RenormalisationEn théorie quantique des champs (ou QFT), en mécanique statistique des champs, dans la théorie des structures géométriques autosimilaires, une renormalisation est une manière, variable dans sa nature, de prendre la limite du continu quand certaines constructions statistiques et quantiques deviennent indéfinies. La renormalisation détermine la façon de relier les paramètres de la théorie quand ces paramètres à grande échelle diffèrent de leur valeur à petite échelle.
Équation de DiracL'équation de Dirac est une équation formulée par Paul Dirac en 1928 dans le cadre de sa mécanique quantique relativiste de l'électron. Il s'agit au départ d'une tentative pour incorporer la relativité restreinte à des modèles quantiques, avec une écriture linéaire entre la masse et l'impulsion. Cette équation décrit le comportement de particules élémentaires de spins demi-entiers, comme les électrons. Dirac cherchait à transformer l'équation de Schrödinger afin de la rendre invariante par l'action du groupe de Lorentz, en d'autre termes à la rendre compatible avec les principes de la relativité restreinte.
Effet Hall quantique fractionnaireL'effet Hall quantique fractionnaire (en anglais, fractional quantum Hall effect : FQHE) est une version en mécanique quantique de l'effet Hall, mise en évidence dans les années 1980 par Horst Störmer et Daniel Tsui et explicitée par Robert B. Laughlin, co-lauréats du prix Nobel de physique de 1998. Lorsque le FQHE apparaît dans un système, celui-ci semble composé de particules possédant une fraction de la charge élémentaire. Le FQHE survient dans un gaz d'électrons bi-dimensionnel, lesquels sont en forte interaction.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
FermionEn physique des particules, un fermion (nom attribué par Paul Dirac d'après Enrico Fermi) est une particule de spin demi-entier (c'est-à-dire 1/2, 3/2, 5/2...). Elle obéit à la statistique de Fermi-Dirac. Un fermion peut être une particule élémentaire, tel l'électron, ou une particule composite, tel le proton, ou toutes leurs antiparticules. Toutes les particules élémentaires observées sont soit des fermions, soit des bosons (l'hypothétique matière noire, encore non observée en , n'est actuellement pas catégorisée).
Self énergieL'auto-énergie ou self-énergie (en anglais) d'une particule élémentaire représente la contribution à son énergie, ou sa masse effective, due aux interactions entre la particule et le système dont elle fait partie. Par exemple, en électrostatique, la self énergie d'une distribution de charge donnée est l'énergie requise pour construire la distribution à partir des charges qui la constitue placé à l'infini, où la force électrique est nulle.
Théorème spin-statistiqueLe théorème spin-statistique relie le spin d'une particule et le type de statistique qu'elle suit. Selon lui, les particules de spin entier sont des bosons, alors que les particules de spin demi-entier sont des fermions. Le théorème spin-statistique est le théorème selon lequel, dans un espace tridimensionnel, les particules élémentaires de spin demi-entier obéissent à la statistique de Fermi-Dirac ; et celles de spin entier, à la statistique de Bose-Einstein. La théorème n'est pas valable en une ou deux dimensions.
Constante de couplageEn physique, une constante de couplage est un nombre caractéristique de l'intensité d'une interaction. En physique classique les constantes de couplage interviennent en mécanique et en électromagnétisme : la constante de couplage de deux circuits linéaires, comme l'inductance mutuelle M d'un transformateur. Voir aussi l'article Couplage de deux oscillateurs électriques ; la constante de couplage de deux systèmes mécaniques, souvent notée k, caractérise leur dépendance l'un à l'autre.
Quantification de Landauvignette|Niveaux de Landau. En mécanique quantique, la quantification de Landau désigne la quantification des orbites cyclotroniques de particules chargées dans un champ magnétique. En conséquence, les particules chargées peuvent seulement occuper des orbitales d'énergie discrète (ou quantique), appelées « niveaux de Landau ». Dans ces niveaux, le nombre d'électrons admis est directement proportionnel au module du champ magnétique. La quantification de Landau influence directement les oscillations quantiques des propriétés électroniques des matériaux.