Algorithme d'approximationEn informatique théorique, un algorithme d'approximation est une méthode permettant de calculer une solution approchée à un problème algorithmique d'optimisation. Plus précisément, c'est une heuristique garantissant à la qualité de la solution qui fournit un rapport inférieur (si l'on minimise) à une constante, par rapport à la qualité optimale d'une solution, pour toutes les instances possibles du problème.
Méthode des k plus proches voisinsEn intelligence artificielle, plus précisément en apprentissage automatique, la méthode des k plus proches voisins est une méthode d’apprentissage supervisé. En abrégé KPPV ou k-PPV en français, ou plus fréquemment k-NN ou KNN, de l'anglais k-nearest neighbors. Dans ce cadre, on dispose d’une base de données d'apprentissage constituée de N couples « entrée-sortie ». Pour estimer la sortie associée à une nouvelle entrée x, la méthode des k plus proches voisins consiste à prendre en compte (de façon identique) les k échantillons d'apprentissage dont l’entrée est la plus proche de la nouvelle entrée x, selon une distance à définir.
Inquiry-based learningInquiry-based learning (also spelled as enquiry-based learning in British English) is a form of active learning that starts by posing questions, problems or scenarios. It contrasts with traditional education, which generally relies on the teacher presenting facts and their knowledge about the subject. Inquiry-based learning is often assisted by a facilitator rather than a lecturer. Inquirers will identify and research issues and questions to develop knowledge or solutions.
Algorithme de GroverEn informatique quantique, l’algorithme de Grover est un algorithme de recherche, permettant de rechercher un ou plusieurs éléments qui répondent à un critère donné parmi éléments non classés en temps proportionnel à et avec un espace de stockage proportionnel à . Il a été découvert par Lov Grover en 1996. Dans les mêmes conditions (recherche parmi des éléments non classés), un algorithme classique ne peut faire mieux qu'une recherche dans un temps proportionnel à , en testant successivement le critère sur chaque élément.
Pédagogie de projetLa pédagogie de projet est une pratique de pédagogie active qui permet de générer des apprentissages à travers la réalisation d'une production concrète. Le projet peut être individuel (comme un exposé ou une maquette) ou collectif (l'organisation d'une fête, d'un voyage, d'un spectacle). Il est semblable à une En effet, lors de la démarche de projet, l’élève est placé en situation de résolution de problèmes, participant de fait au processus d’apprentissage.
Algorithme de DijkstraEn théorie des graphes, l'algorithme de Dijkstra (prononcé ) sert à résoudre le problème du plus court chemin. Il permet, par exemple, de déterminer un plus court chemin pour se rendre d'une ville à une autre connaissant le réseau routier d'une région. Plus précisément, il calcule des plus courts chemins à partir d'une source vers tous les autres sommets dans un graphe orienté pondéré par des réels positifs. On peut aussi l'utiliser pour calculer un plus court chemin entre un sommet de départ et un sommet d'arrivée.
Oracle (machine de Turing)vignette|upright=2|Une machine de Turing avec oracle peut faire appel à une boîte noire (oracle). En théorie de la complexité ou de la calculabilité, les machines de Turing avec oracle sont une variante des machines de Turing disposant d'une boîte noire, un oracle, capable de résoudre un problème de décision en une seule opération élémentaire. En particulier, l'oracle peut résoudre en temps constant un problème indécidable comme le problème de l'arrêt.
Recherche séquentiellevignette|Diagramme de recherche séquentielle La recherche séquentielle ou recherche linéaire est un algorithme pour trouver une valeur dans une liste. Elle consiste simplement à considérer les éléments de la liste les uns après les autres, jusqu'à ce que l'élément soit trouvé, ou que toutes les cases aient été lues. Elle est aussi appelée recherche par balayage. La recherche séquentielle consiste à prendre les éléments de la liste les uns après les autres, jusqu'à avoir trouvé la cible, ou avoir épuisé la liste.
Inférence bayésiennevignette|Illustration comparant les approches fréquentiste et bayésienne (Christophe Michel, 2018). L’inférence bayésienne est une méthode d'inférence statistique par laquelle on calcule les probabilités de diverses causes hypothétiques à partir de l'observation d'événements connus. Elle s'appuie principalement sur le théorème de Bayes. Le raisonnement bayésien construit, à partir d'observations, une probabilité de la cause d'un type d'événements.
Apprentissage par problèmesDans l'apprentissage par problèmes (APP), ou apprentissage par résolution de problèmes, les apprenants, regroupés par équipes, travaillent ensemble à résoudre un problème généralement proposé par l'enseignant, problème pour lequel ils n'ont reçu aucune formation particulière, de façon à faire des apprentissages de contenu et de savoir-faire, à découvrir des notions nouvelles de façon active (il s’instruit lui-même) en y étant poussé par les nécessités du problème soumis.