Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Conditional probability distributionIn probability theory and statistics, given two jointly distributed random variables and , the conditional probability distribution of given is the probability distribution of when is known to be a particular value; in some cases the conditional probabilities may be expressed as functions containing the unspecified value of as a parameter. When both and are categorical variables, a conditional probability table is typically used to represent the conditional probability.
Indice d'un sous-groupeEn mathématiques, et plus précisément en théorie des groupes, si H est un sous-groupe d'un groupe G, l'indice du sous-groupe H dans G est le nombre de copies distinctes de H que l'on obtient en multipliant à gauche par un élément de G, soit le nombre des xH quand x parcourt G (on peut choisir en fait indifféremment de multiplier à gauche ou à droite). Les classes xH formant une partition, et la multiplication à gauche dans un groupe par un élément donné étant bijective, le produit de l'indice du sous-groupe H dans G par l'ordre de H égale l'ordre de G, ce dont on déduit, pour un groupe fini, le théorème de Lagrange.
Groupe de HeisenbergEn mathématiques, le groupe de Heisenberg d'un anneau unifère A (non nécessairement commutatif) est le groupe multiplicatif des matrices triangulaires supérieures de taille 3 à coefficients dans A et dont les éléments diagonaux sont égaux au neutre multiplicatif de l'anneau : Originellement, l'anneau A choisi par Werner Heisenberg était le corps R des réels. Le « groupe de Heisenberg continu », , lui a permis d'expliquer, en mécanique quantique, l'équivalence entre la représentation de Heisenberg et celle de Schrödinger.