Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We study the one-dimensional discrete Schrödinger operator with the skew-shift potential . This potential is long conjectured to behave like a random one, i.e., it is expected to produce Anderson localization for arbitrarily small coupling constants . In this paper, we introduce a novel perturbative approach for studying the zero-energy Lyapunov exponent at small . Our main results establish that, to second order in perturbation theory, a natural upper bound on is fully consistent with being positive and satisfying the usual Figotin-Pastur type asymptotics as . The analogous quantity behaves completely differently in the Almost-Mathieu model, whose zero-energy Lyapunov exponent vanishes for $\lambda
Frédéric Mila, Antoine Yves Dimitri Fache
François Gallaire, Yves-Marie François Ducimetière