Publication

Improved Ramsey-type results for comparability graphs

Concepts associés (37)
Graph rewriting
In computer science, graph transformation, or graph rewriting, concerns the technique of creating a new graph out of an original graph algorithmically. It has numerous applications, ranging from software engineering (software construction and also software verification) to layout algorithms and picture generation. Graph transformations can be used as a computation abstraction. The basic idea is that if the state of a computation can be represented as a graph, further steps in that computation can then be represented as transformation rules on that graph.
Graph operations
In the mathematical field of graph theory, graph operations are operations which produce new graphs from initial ones. They include both unary (one input) and binary (two input) operations. Unary operations create a new graph from a single initial graph. Elementary operations or editing operations, which are also known as graph edit operations, create a new graph from one initial one by a simple local change, such as addition or deletion of a vertex or of an edge, merging and splitting of vertices, edge contraction, etc.
Graphe birégulier
Dans la théorie des graphes, un graphe birégulier est un graphe biparti dans lequel tous les sommets de chacune des deux parties du graphe ont le même degré. Notons et les deux parties d'un graphe birégulier. Si le degré des sommets de est et si le degré des sommets de est , le graphe est dit -birégulier. vignette|Le graphe biparti complet est -birégulier. Tout graphe biparti complet (figure) est -birégulier. vignette|gauche|Le graphe du dodécaèdre rhombique est birégulier. Le graphe du dodécaèdre rhombique (figure) est -birégulier.
Graphe de Kneser
En théorie des graphes, les graphes de Kneser forment une famille infinie de graphes. Le graphe de Kneser KGn,k est un graphe simple dont les sommets correspondent aux sous-ensembles à k éléments d'un ensemble à n éléments. Deux sommets sont reliés s'ils correspondent à des sous-ensembles disjoints. Son ordre est donc égal , le nombre de combinaison de k parmi n, et il est régulier de degré . En 1955, le mathématicien Martin Kneser se pose la question suivante : Kneser conjecture que ce n'est pas possible et le publie sous forme d'un exercice.
Théorème de Dilworth
Le théorème de Dilworth en théorie des ordres et en combinatoire, dû à Robert Dilworth, caractérise la largeur de tout ordre (partiel) fini en termes d'une partition de cet ordre en un nombre minimum de chaînes. Dans un ensemble ordonné, une antichaîne est une partie dont les éléments sont deux à deux incomparables et une chaîne est une partie dont les éléments sont deux à deux comparables. Le théorème de Dilworth établit, pour un ordre fini, l'existence d'une antichaîne A et d'une partition de l'ensemble ordonné en une famille P de chaînes, telles que A et P aient même cardinal.
Théorie de Ramsey
En mathématiques, et plus particulièrement en combinatoire, la théorie de Ramsey, nommée d'après Frank Ramsey, tente typiquement de répondre à des questions de la forme : « combien d'éléments d'une certaine structure doivent être considérés pour qu'une propriété particulière se vérifie ? » Le premier exemple de résultat de cette forme est le principe des tiroirs, énoncé par Dirichlet en 1834. Supposons, par exemple, que n chaussettes soient rangées dans m tiroirs.
Order dimension
In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order. This concept is also sometimes called the order dimension or the Dushnik–Miller dimension of the partial order. first studied order dimension; for a more detailed treatment of this subject than provided here, see . The dimension of a poset P is the least integer t for which there exists a family of linear extensions of P so that, for every x and y in P, x precedes y in P if and only if it precedes y in all of the linear extensions.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.