Forme binaireEn musique classique, la forme binaire est une structure musicale particulière de l'œuvre musicale composée de deux sections — A et B — exécutées deux fois chacune, soit : AABB. Sur une partition, la forme binaire est le plus souvent notée au moyen de barres de reprise. La section A s'achève habituellement dans une tonalité voisine — très souvent, la tonalité de la dominante. La section B au contraire, commence par cette tonalité voisine, et, après un nombre variable de modulations, s'achève sur la tonalité de départ.
Forme musicaleLe terme forme désigne, dans le domaine musical, la structure d'une œuvre musicale. Le travail d'analyse des œuvres musicales a notamment pour tâche de comprendre la forme des œuvres, qui peut être très simple (forme strophique, forme couplet-refrain) ou très complexe. Évidemment, le terme structure doit se comprendre à plusieurs niveaux, c'est-à-dire qu'une œuvre musicale pourra avoir une forme générale en un ou plusieurs mouvements, dans l'un des mouvements il y aura une forme en plusieurs sections, et dans chaque section il y aura des phrases distinctes.
Régression et dégradation des solsvignette|redresse=1.7|Carte mondiale de la dégradation des sols établie en 2017. Selon le rapport de 2015 de la FAO et l' sur l'« État des ressources du sol dans le monde », un tiers des terres arables de la planète sont plus ou moins menacées de disparaître. Les principales menaces qui affectent les sols sont leur érosion (par l'eau, le vent ou le labour), la perte de carbone organique et les déséquilibres nutritifs liés principalement au changement d'affectation des sols (urbanisation, défrichement), ainsi qu'à l'intensification de l'agriculture et de la déforestation.
Méthode de Newtonvignette|Une itération de la méthode de Newton. En analyse numérique, la méthode de Newton ou méthode de Newton-Raphson est, dans son application la plus simple, un algorithme efficace pour trouver numériquement une approximation précise d'un zéro (ou racine) d'une fonction réelle d'une variable réelle. Cette méthode doit son nom aux mathématiciens anglais Isaac Newton (1643-1727) et Joseph Raphson (peut-être 1648-1715), qui furent les premiers à la décrire pour la recherche des solutions d'une équation polynomiale.
Forme quadratiquethumb|L'annulation d'une forme quadratique donne le cône de lumière de la relativité restreinte, son signe fait la différence entre les événements accessibles ou inaccessibles dans l'espace-temps. En mathématiques, une forme quadratique est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Les formes quadratiques d'une, deux et trois variables sont données respectivement par les formules suivantes (a,b,c,d,e,f désignant des coefficients) : L'archétype de forme quadratique est la forme x + y + z sur R, qui définit la structure euclidienne et dont la racine carrée permet de calculer la norme d'un vecteur.
Definite quadratic formIn mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.