Résumé
thumb|L'annulation d'une forme quadratique donne le cône de lumière de la relativité restreinte, son signe fait la différence entre les événements accessibles ou inaccessibles dans l'espace-temps. En mathématiques, une forme quadratique est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Les formes quadratiques d'une, deux et trois variables sont données respectivement par les formules suivantes (a,b,c,d,e,f désignant des coefficients) : L'archétype de forme quadratique est la forme x + y + z sur R, qui définit la structure euclidienne et dont la racine carrée permet de calculer la norme d'un vecteur. Un autre exemple très classique est la forme x + y + z – t sur R, qui permet de définir l'espace de Minkowski utilisé en relativité restreinte. C'est pourquoi la théorie des formes quadratiques utilise le vocabulaire de la géométrie (orthogonalité). La géométrie est un bon guide pour aborder cette théorie, malgré quelques pièges, liés notamment aux questions de signes ou plus généralement au choix du corps dans lequel varient les coefficients. Les formes quadratiques interviennent dans de nombreux domaines des mathématiques : différents résultats de classification des coniques et plus généralement des quadriques, recherche de minimum ou maximum local d'une fonction de plusieurs variables à partir d'un développement limité, introduction de la courbure des surfaces, analyse en composantes principales en statistiques. Les formes quadratiques entières interviennent en théorie des nombres et en topologie algébrique. On trouve également des formes quadratiques dans plusieurs domaines de la physique : pour définir l'ellipsoïde d'inertie en mécanique du solide, en relativité restreinte ou générale... Les exemples les plus simples de formes quadratiques sont donnés avec un certain nombre de variables et de coefficients, en commençant par les formes quadratiques binaires. La définition générale s'écrit dans un module sur un anneau commutatif.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.