Invariance d'échelleIl y a invariance d'échelle lorsqu'aucune échelle ne caractérise le système. Par exemple, dans un ensemble fractal, les propriétés seront les mêmes quelle que soit la distance à laquelle on se place. Une fonction g est dite invariante d'échelle s'il existe une fonction telle que pour tout x et y : Alors, il existe une constante et un exposant , tels que : En physique, l'invariance d'échelle n'est valable que dans un domaine de taille limité — par exemple, pour un ensemble fractal, on ne peut pas se placer à une échelle plus petite que celle des molécules, ni plus grande que la taille du système.
Échelle de Richtervignette|droite|Représentation d'une onde sismique. Historiquement, l'échelle de Richter a été l'une des premières tentatives d'évaluer numériquement l'intensité des tremblements de terre, grâce à la magnitude de Richter qui mesure l'énergie sismique radiée (énergie des ondes sismiques) lors du séisme. Imprécise et dépassée, elle a depuis été remplacée par des échelles plus précises permettant de mesurer la magnitude des séismes. L'éponyme de l’échelle de Richter est le sismologue américain Charles Francis Richter (-) qui l'a proposée en .
Écoulement de StokesUn écoulement de Stokes (ou écoulement rampant) caractérise un fluide visqueux qui s'écoule lentement en un lieu étroit ou autour d'un petit objet, dont les effets visqueux dominent alors sur les effets inertiels. On parle parfois de fluide de Stokes par opposition à fluide parfait. Il est en effet régi par une version simplifiée de l'équation de Navier-Stokes, léquation de Stokes, dans laquelle les termes inertiels sont absents.
Génie biomédicalvignette|Exemple d'application du génie biomédical : la pompe à insuline Le génie biomédical (GBM) est une application des principes et des techniques de l'ingénierie dans le domaine médical visant au contrôle des systèmes biologiques ou au développement d’appareils servant au diagnostic et au traitement des patients. Ce domaine est un mélange de médecine, de biologie, d'ingénierie et de physique.
Deterministic systemIn mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state. Physical laws that are described by differential equations represent deterministic systems, even though the state of the system at a given point in time may be difficult to describe explicitly.
Ingénierie électroniquevignette|Amplificateur L’ingénierie électronique est la branche de l’ingénierie qui traite les nouvelles technologies (téléphone portable, télévision...). Ils peuvent aussi bien programmer que créer le produit en question. Cela inclut l’ingénierie des appareils électroniques ainsi que l'ingénierie de la programmation. D’autres branches de l’ingénierie comme l’ingénierie biomédicale, les télécommunications et le génie informatique ont été, au moment de leur naissance, seulement des spécialisations de l’ingénierie électronique.
Ondevignette|Propagation d'une onde. Une onde est la propagation d'une perturbation produisant sur son passage une variation réversible des propriétés physiques locales du milieu. Elle se déplace avec une vitesse déterminée qui dépend des caractéristiques du milieu de propagation. vignette|Une vague s'écrasant sur le rivage. Il existe trois principaux types d'ondes : les ondes mécaniques se propagent à travers une matière physique dont la substance se déforme. Les forces de restauration inversent alors la déformation.
Système dissipatifUn système dissipatif (ou structure dissipative) est un système qui évolue dans un environnement avec lequel il échange de l'énergie ou de la matière. C'est donc un système ouvert, loin d'un équilibre thermodynamique. Un système dissipatif est caractérisé par le bilan de ses échanges (échange d'énergie, création d'entropie), et l'apparition spontanée d'une brisure de symétrie spatiale (anisotropie) qui peut quelquefois laisser apparaître une structure complexe chaotique. L'expression « structures dissipatives » fut créée par Ilya Prigogine.
Point périodiquevignette|Diagramme explicatif du point périodique de période 4 du système dynamique discret f En mathématiques, un point périodique pour une fonction est un point fixe pour l’une des fonctions itérées. La période de ce point est alors la période de la suite récurrente associée. De tels points périodiques apparaissent facilement avec une suite logistique lorsque le paramètre μ dépasse la valeur 3. Le théorème de Charkovski donne un ordre sur les périodes pouvant apparaitre dans les suites récurrentes réelles simples associée à une fonction donnée.
Onde stationnairevignette|redresse=2|Onde stationnaire résultant de la superposition d'ondes de sens inverse ; les points rouges sont les nœuds de vibration. En physique ondulatoire, une est une oscillation locale dans un milieu clos, qui ne se propage pas. On appelle les points où l'amplitude est nulle des nœuds de vibration, et ceux où l'amplitude est maximale des ventres de vibration. Dans un milieu à une dimension, comme un conducteur électrique ou un tuyau, elle est la résultante de la superposition d'ondes de même fréquence et de même amplitude mais de sens de propagation opposé .