Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We consider three classes of linear differential equations on distribution functions, with a fractional order alpha is an element of [0; 1]. The integer case alpha = 1 corresponds to the three classical extreme families. In general, we show that there is a unique distribution function solving these equations, whose underlying random variable is expressed in terms of an exponential random variable and an integral transform of an independent alpha-stable subordinator. From the analytical viewpoint, this distribution is in one-to-one correspondence with a Kilbas-Saigo function for the Weibull and Frechet cases, and with a Le Roy function for the Gumbel case.
Jean-François Molinari, Sacha Zenon Wattel