Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Filtre passe-basUn filtre passe-bas est un filtre qui laisse passer les basses fréquences et qui atténue les hautes fréquences, c'est-à-dire les fréquences supérieures à la fréquence de coupure. Il pourrait également être appelé filtre coupe-haut. Le filtre passe-bas est l'inverse du filtre passe-haut et ces deux filtres combinés forment un filtre passe-bande. Le concept de filtre passe-bas est une transformation mathématique appliquée à des données (un signal). L'implémentation d'un filtre passe-bas peut se faire numériquement ou avec des composants électroniques.
Direct image functorIn mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: X → Y, we can define a new sheaf f∗F on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of f∗F is given by the global sections of F.
Direct image with compact supportIn mathematics, the direct image with compact (or proper) support is an for sheaves that extends the compactly supported global sections functor to the relative setting. It is one of Grothendieck's six operations. Let f: X → Y be a continuous mapping of locally compact Hausdorff topological spaces, and let Sh(–) denote the of sheaves of abelian groups on a topological space. The direct image with compact (or proper) support is the functor f!: Sh(X) → Sh(Y) that sends a sheaf F on X to the sheaf f!(F) given by the formula f!(F)(U) := {s ∈ F(f −1(U)) | f|supp(s): supp(s) → U is proper} for every open subset U of Y.
Real projective spaceIn mathematics, real projective space, denoted \mathbb{RP}^n or \mathbb{P}_n(\R), is the topological space of lines passing through the origin 0 in the real space \R^{n+1}. It is a compact, smooth manifold of dimension n, and is a special case \mathbf{Gr}(1, \R^{n+1}) of a Grassmannian space. As with all projective spaces, RPn is formed by taking the quotient of Rn+1 ∖ under the equivalence relation x ∼ λx for all real numbers λ ≠ 0. For all x in Rn+1 ∖ one can always find a λ such that λx has norm 1.
Impédance caractéristique du videL'impédance caractéristique du vide est une constante physique, liant les amplitudes des champs électrique et magnétique se propageant dans un espace libre. Elle est notée par . L'impédance caractéristique du vide est définie par : où : est la perméabilité magnétique du vide ou constante magnétique est la vitesse de la lumière dans le vide. est la permittivité du vide Dans le système du SI, sa valeur est égale à : Avant le 20 mai 2019, le coefficient était une valeur exacte parce que c et avaient des valeurs fixes, définissant le mètre à partir de la seconde et l'ampère à partir du kilogramme, du mètre et de la seconde.