Résonance magnétique nucléairevignette|175px|Spectromètre de résonance magnétique nucléaire. L'aimant de 21,2 T permet à l'hydrogène (H) de résonner à . La résonance magnétique nucléaire (RMN) est une propriété de certains noyaux atomiques possédant un spin nucléaire (par exemple H, C, O, F, P, Xe...), placés dans un champ magnétique. Lorsqu'ils sont soumis à un rayonnement électromagnétique (radiofréquence), le plus souvent appliqué sous forme d'impulsions, les noyaux atomiques peuvent absorber l'énergie du rayonnement puis la relâcher lors de la relaxation.
Spin-1/2In quantum mechanics, spin is an intrinsic property of all elementary particles. All known fermions, the particles that constitute ordinary matter, have a spin of 1/2. The spin number describes how many symmetrical facets a particle has in one full rotation; a spin of 1/2 means that the particle must be rotated by two full turns (through 720°) before it has the same configuration as when it started. Particles having net spin 1/2 include the proton, neutron, electron, neutrino, and quarks.
Spin–lattice relaxationDuring nuclear magnetic resonance observations, spin–lattice relaxation is the mechanism by which the longitudinal component of the total nuclear magnetic moment vector (parallel to the constant magnetic field) exponentially relaxes from a higher energy, non-equilibrium state to thermodynamic equilibrium with its surroundings (the "lattice"). It is characterized by the spin–lattice relaxation time, a time constant known as T1.
Spectroscopie RMNvignette|redresse|Spectromètre RMN avec passeur automatique d'échantillons utilisé en chimie organique pour la détermination des structures chimiques. vignette|redresse|Animation présentant le principe de la Résonance Magnétique Nucléaire (RMN). La spectroscopie RMN est une technique qui exploite les propriétés magnétiques de certains noyaux atomiques. Elle est basée sur le phénomène de résonance magnétique nucléaire (RMN), utilisé également en sous le nom d’.
SpinLe 'spin' () est, en physique quantique, une des propriétés internes des particules, au même titre que la masse ou la charge électrique. Comme d'autres observables quantiques, sa mesure donne des valeurs discrètes et est soumise au principe d'incertitude. C'est la seule observable quantique qui ne présente pas d'équivalent classique, contrairement, par exemple, à la position, l'impulsion ou l'énergie d'une particule. Il est toutefois souvent assimilé au moment cinétique (cf de cet article, ou Précession de Thomas).
Spin–spin relaxationIn physics, the spin–spin relaxation is the mechanism by which Mxy, the transverse component of the magnetization vector, exponentially decays towards its equilibrium value in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI). It is characterized by the spin–spin relaxation time, known as T2, a time constant characterizing the signal decay. It is named in contrast to T1, the spin–lattice relaxation time.
Théorème spin-statistiqueLe théorème spin-statistique relie le spin d'une particule et le type de statistique qu'elle suit. Selon lui, les particules de spin entier sont des bosons, alors que les particules de spin demi-entier sont des fermions. Le théorème spin-statistique est le théorème selon lequel, dans un espace tridimensionnel, les particules élémentaires de spin demi-entier obéissent à la statistique de Fermi-Dirac ; et celles de spin entier, à la statistique de Bose-Einstein. La théorème n'est pas valable en une ou deux dimensions.
Orbitale atomiqueredresse=1.5|vignette|Représentation des nuages de probabilité de présence de l'électron (en haut) et des isosurfaces à 90 % (en bas) pour les orbitales 1s, 2s et 2p. Dans le cas des orbitales 2p ( ), les trois isosurfaces 2p, 2p et 2p représentées correspondent à , et . Les couleurs indiquent la phase de la fonction d'onde : positive en rouge, négative en bleu. En mécanique quantique, une orbitale atomique est une fonction mathématique qui décrit le comportement ondulatoire d'un électron ou d'une paire d'électrons dans un atome.
Demi-entierEn mathématiques, un demi-entier est un nombre de la forme , où est un entier relatif. Par exemple, sont des demi-entiers. Remarquons que la moitié d’un entier n’est pas toujours un demi-entier. Par exemple, la moitié d’un entier pair est un entier mais pas un demi-entier. Les demi-entiers sont précisément les nombres qui sont la moitié d’un entier impair. L’ensemble des demi-entiers est souvent noté . Les demi-entiers apparaissent assez fréquemment dans les textes mathématiques dans lesquelles il est pratique de leur donner un nom.
Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.