DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Truncated tesseractIn geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract. There are three truncations, including a bitruncation, and a tritruncation, which creates the truncated 16-cell. The truncated tesseract is bounded by 24 cells: 8 truncated cubes, and 16 tetrahedra. Truncated tesseract (Norman W. Johnson) Truncated tesseract (Acronym tat) (George Olshevsky, and Jonathan Bowers) The truncated tesseract may be constructed by truncating the vertices of the tesseract at of the edge length.
Famillevignette|Le repas familial (gravure sur bois, ). vignette|La famille de Philippe V d'Espagne (en 1723). vignette|Le portrait de famille est une des formes picturales répandues d'abord dans les familles nobles puis chez les familles bourgeoises (ici la famille Souchay vers 1805). vignette|Un peu de conversation, huile sur toile de Lilly Martin Spencer, vers 1851-1852 vignette|Peinture à l'huile de Jean de Francqueville intitulée . thumb|Portrait d'un chef camerounais et de sa famille (entre 1910 et 1930).
Conjecture de Pólyathumb|right|Fonction sommatoire de la fonction de Liouville L(n) jusqu'à n = . thumb|right|Gros plan sur la fonction sommatoire de la fonction de Liouville L(n) dans la région où la conjecture de Pólya est en défaut. En théorie des nombres, la conjecture de Pólya énonce que la plupart (c'est-à-dire plus de la moitié) des entiers naturels inférieurs à un entier donné ont un nombre impair de facteurs premiers. La conjecture a été proposée par le mathématicien hongrois George Pólya en 1919.
Conjecture de CramérEn mathématiques, la conjecture de Cramér, formulée par le mathématicien suédois Harald Cramér en 1936, pronostique l'asymptotique suivante pour l'écart entre nombres premiers : où gn est le n-ième écart, pn est le n-ième nombre premier et désigne le symbole de Bachmann-Landau ; cette conjecture n'est pas démontrée à ce jour. Cramér avait auparavant, en 1920, démontré un énoncé plus faible : sous l'hypothèse de Riemann (qui elle-même n'est pas démontrée non plus).
Famille nucléairevignette|Un couple et des enfants : la famille nucléaire Une famille nucléaire est une forme de structure familiale fondée sur la notion de couple, soit un « ensemble de deux personnes liées par une volonté de former une communauté matérielle et affective, potentiellement concrétisée par une relation sexuelle conforme à la loi ». La famille nucléaire correspond donc à une famille regroupant deux adultes mariés ou non avec ou sans enfant. Cette structure familiale se distingue de la famille élargie et de la famille polygame.
Équation de Fermat généraliséeEn arithmétique, l'équation de Fermat généralisée est l'équationoù sont des entiers non nuls, sont des entiers non nuls premiers entre eux et sont entiers. Comme son nom le laisse transparaître, cette équation généralise l'équation dont le fameux dernier théorème de Fermat établit l'impossibilité quand . À l'instar de celui-ci avant sa résolution, son principal intérêt réside aujourd'hui dans la stimulation du développement des nouveaux outils mathématiques nécessaires à son appréhension.
Conjecture de PoincaréLa conjecture de Poincaré est une conjecture mathématique du domaine de la topologie algébrique portant sur la caractérisation d'une variété particulière, la sphère de dimension trois ; elle fut démontrée en 2003 par le Russe Grigori Perelman. On peut ainsi également l'appeler théorème de Perelman. Elle faisait jusqu'alors partie des problèmes de Smale et des sept « problèmes du prix du millénaire » recensés et mis à prix en 2000 par l'Institut de mathématiques Clay.
Extra dimensionsIn physics, extra dimensions are proposed additional space or time dimensions beyond the (3 + 1) typical of observed spacetime, such as the first attempts based on the Kaluza–Klein theory. Among theories proposing extra dimensions are: Large extra dimension, mostly motivated by the ADD model, by Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali in 1998, in an attempt to solve the hierarchy problem. This theory requires that the fields of the Standard Model are confined to a four-dimensional membrane, while gravity propagates in several additional spatial dimensions that are large compared to the Planck scale.
Norme (mathématiques)En géométrie, la norme est une extension de la valeur absolue des nombres aux vecteurs. Elle permet de mesurer la longueur commune à toutes les représentations d'un vecteur dans un espace affine, mais définit aussi une distance entre deux vecteurs invariante par translation et compatible avec la multiplication externe. La norme usuelle dans le plan ou l'espace est dite euclidienne car elle est associée à un produit scalaire, à la base de la géométrie euclidienne.