Règle des phasesEn physique, et particulièrement en thermodynamique chimique, la règle des phases (ou règle des phases de Gibbs, ou règle de Gibbs) donne le nombre maximum de paramètres intensifs qu'un opérateur peut fixer librement sans rompre l'équilibre d'un système thermodynamique. Ce nombre de paramètres indépendants est appelé variance. Les paramètres sont choisis le plus souvent parmi la pression, la température et les concentrations des diverses espèces chimiques dans les diverses phases présentes.
Phase (thermodynamique)thumb|right|Un système composé d'eau et d'huile, à l'équilibre, est composé de deux phases distinctes (biphasique). En thermodynamique, on utilise la notion de phase pour distinguer les différents états possibles d'un système. Selon le contexte et les auteurs, le mot est utilisé pour désigner plusieurs choses, parfois de natures différentes, mais étroitement liées. Si un système thermodynamique est entièrement homogène, physiquement et chimiquement, on dit qu'il constitue une seule phase.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Chromatographie en phase liquide à haute performancevignette|Un chromatographe en phase liquide à haute performance. De gauche à droite : un dispositif de pompage destiné à générer un gradient de deux solvants une colonne de chromatographie et un détecteur pour mesurer l'absorbance. vignette|Un chromatographe en phase liquide à haute performance moderne. La chromatographie en phase liquide à haute performance (CLHP) est une technique de séparation analytique et/ou préparatrice de molécules présentes dans un mélange.
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Inflation cosmiquevignette |upright=1.5 |Inflation cosmique (en beige), avant seconde. L'inflation cosmique est un modèle cosmologique s'insérant dans le paradigme du Big Bang lors duquel une région de l'Univers comprenant l'Univers observable a connu une phase d'expansion très rapide qui lui aurait permis de grossir d'un facteur considérable : au moins 10 en un temps extrêmement bref, compris entre 10 et 10 secondes après le Big Bang. Ce modèle cosmologique offre une solution à la fois au problème de l'horizon et au problème de la platitude.
NanoparticuleUne nanoparticule est selon la norme ISO TS/27687 un nano-objet dont les trois dimensions sont à l'échelle nanométrique, c'est-à-dire une particule dont le diamètre nominal est inférieur à environ. D'autres définitions évoquent un assemblage d'atomes dont au moins une des dimensions se situe à l'échelle nanométrique (ce qui correspond au « nano-objet » tel que défini par la norme ISO précitée) ou insistent sur leurs propriétés nouvelles (dues au confinement quantique et à leur surface spécifique) qui n'apparaissent que pour des tailles de moins d'une centaine de nanomètres.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Initial value problemIn multivariable calculus, an initial value problem (IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem. In that context, the differential initial value is an equation which specifies how the system evolves with time given the initial conditions of the problem.
Invariance d'échelleIl y a invariance d'échelle lorsqu'aucune échelle ne caractérise le système. Par exemple, dans un ensemble fractal, les propriétés seront les mêmes quelle que soit la distance à laquelle on se place. Une fonction g est dite invariante d'échelle s'il existe une fonction telle que pour tout x et y : Alors, il existe une constante et un exposant , tels que : En physique, l'invariance d'échelle n'est valable que dans un domaine de taille limité — par exemple, pour un ensemble fractal, on ne peut pas se placer à une échelle plus petite que celle des molécules, ni plus grande que la taille du système.