Polyèdre isoédriquevignette| Un jeu de dés isoédriques En géométrie, un polytope de dimension 3 (un polyèdre) ou plus est dit isoédrique lorsque ses faces sont identiques. Plus précisément, toutes les faces ne doivent pas être simplement isométriques, mais doivent être transitives, c'est-à-dire qu'elles doivent se trouver dans la même orbite de symétrie. En d'autres termes, pour toutes les faces A et B, il doit y avoir une symétrie de l'ensemble du solide par rotations et réflexions qui envoie A sur B.
Matériauvignette|Grandes classes de matériaux. Les matériaux minéraux sont des roches, des céramiques ou des verres. Les matériaux métalliques sont des métaux ou des alliages. Un matériau est toute matière utilisée pour réaliser un objet au sens large. Ce dernier est souvent une pièce d'un sous-ensemble. C'est donc une matière sélectionnée à l'origine en raison de propriétés particulières et mise en œuvre en vue d'un usage spécifique.
Centroidal Voronoi tessellationIn geometry, a centroidal Voronoi tessellation (CVT) is a special type of Voronoi tessellation in which the generating point of each Voronoi cell is also its centroid (center of mass). It can be viewed as an optimal partition corresponding to an optimal distribution of generators. A number of algorithms can be used to generate centroidal Voronoi tessellations, including Lloyd's algorithm for K-means clustering or Quasi-Newton methods like BFGS.
ViscoélasticitéLa viscoélasticité est la propriété de matériaux qui présentent des caractéristiques à la fois visqueuses et élastiques, lorsqu'ils subissent une déformation. Les matériaux visqueux, comme le miel, résistent bien à un écoulement en cisaillement et présentent une déformation qui augmente linéairement avec le temps lorsqu'une contrainte est appliquée. Les matériaux élastiques se déforment lorsqu'ils sont contraints, et retournent rapidement à leur état d'origine une fois la contrainte retirée.
Écrouissagedroite|vignette|Laminage : l'amincissement provoque un durcissement du métal. Lécrouissage d'un métal est le durcissement d'un métal ductile sous l'effet de sa déformation plastique (déformation permanente). Ce mécanisme de durcissement explique en grande partie les différences de tenues et résistance entre les pièces métalliques obtenues par corroyage (c'est-à-dire par déformation plastique : laminage, tréfilage, forgeage) et les pièces de fonderie (simplement coulées dans un moule).
Robotique molleLa robotique molle () est un domaine de la robotique. Ce domaine traite des « robots mous » incluant certains types de drones, et construits en matériaux ou structures souples, élastiques ou déformables tels que le silicone, le plastique, le caoutchouc et autres polymères, les tissus, etc., ou des pièces mécaniques déformables utilisées en robotique, par exemple les ressorts, les élastiques ou les absorbeurs de chocs ou de vibrations.
Matériau bidimensionnelUn matériau bidimensionnel, parfois appelé matériau monocouche ou matériau 2D, est un matériau constitué d'une seule couche d'atomes ou de molécules. Depuis l'isolement du graphène (une seule couche de graphite) en 2004, beaucoup de recherches ont été réalisées pour isoler d'autres matériaux bidimensionnels en raison de leurs caractéristiques inhabituelles et pour une potentielle utilisation dans des applications telles que le photovoltaïque, les semi-conducteurs et la purification de l'eau.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Close-packing of equal spheresIn geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction.
Parallélépipèdevignette|Perspective cavalière d'un parallélépipède. En géométrie dans l'espace, un parallélépipède (ou parallélipipède) est un solide dont les six faces sont des parallélogrammes. Il est au parallélogramme ce que le cube est au carré et ce que le pavé droit est au rectangle. En géométrie affine, où l'on ne tient compte que de la notion de parallélisme, un parallélépipède peut être aussi défini comme un hexaèdre dont les faces sont parallèles deux à deux ; un prisme dont la base est un parallélogramme.