Statistique bayésienneLa statistique bayésienne est une approche statistique fondée sur l'inférence bayésienne, où la probabilité exprime un degré de croyance en un événement. Le degré initial de croyance peut être basé sur des connaissances a priori, telles que les résultats d'expériences antérieures, ou sur des croyances personnelles concernant l'événement. La perspective bayésienne diffère d'un certain nombre d'autres interprétations de la probabilité, comme l'interprétation fréquentiste qui considère la probabilité comme la limite de la fréquence relative d'un événement après de nombreux essais.
Inférence statistiquevignette|Illustration des 4 principales étapes de l'inférence statistique L'inférence statistique est l'ensemble des techniques permettant d'induire les caractéristiques d'un groupe général (la population) à partir de celles d'un groupe particulier (l'échantillon), en fournissant une mesure de la certitude de la prédiction : la probabilité d'erreur. Strictement, l'inférence s'applique à l'ensemble des membres (pris comme un tout) de la population représentée par l'échantillon, et non pas à tel ou tel membre particulier de cette population.
Classement automatiquevignette|La fonction 1-x^2-2exp(-100x^2) (rouge) et les valeurs déplacées par un bruit de 0,1*N(0,1). Le classement automatique ou classification supervisée est la catégorisation algorithmique d'objets. Elle consiste à attribuer une classe ou catégorie à chaque objet (ou individu) à classer, en se fondant sur des données statistiques. Elle fait couramment appel à l'apprentissage automatique et est largement utilisée en reconnaissance de formes. En français, le classement fait référence à l'action de classer donc de « ranger dans une classe ».
Experiential learningExperiential learning (ExL) is the process of learning through experience, and is more narrowly defined as "learning through reflection on doing". Hands-on learning can be a form of experiential learning, but does not necessarily involve students reflecting on their product. Experiential learning is distinct from rote or didactic learning, in which the learner plays a comparatively passive role. It is related to, but not synonymous with, other forms of active learning such as action learning, adventure learning, free-choice learning, cooperative learning, service-learning, and situated learning.
Apprentissage actifL’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises. Cette technique repose sur l'hypothèse que l’acquisition de données non étiquetées est beaucoup moins coûteuse que celle de données étiquetées.
Reconnaissance de formesthumb|Reconnaissance de forme à partir de modélisation en 3D La reconnaissance de formes (ou parfois reconnaissance de motifs) est un ensemble de techniques et méthodes visant à identifier des régularités informatiques à partir de données brutes afin de prendre une décision dépendant de la catégorie attribuée à ce motif. On considère que c'est une branche de l'intelligence artificielle qui fait largement appel aux techniques d'apprentissage automatique et aux statistiques.
Styles d'apprentissageLes styles d’apprentissage constituent une gamme de théories concurrentes et contestées qui, à partir d’un concept commun selon lequel les apprenants diffèreraient dans la façon d’acquérir leur connaissances, vise à tenir compte desdites différences d’acquisition supposées chez les apprenants. Bien que ces diverses théories divergent dans leurs vues sur la façon dont lesdits styles doivent être définis et classés, ces théories suggèrent que tous les apprenants pourraient être étiquetés en fonction d’un « style » d’apprentissage particulier comme « visuel », « auditif », « kinesthésique », « tactile », etc.
Apprentissage superviséL'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.
Protein function predictionProtein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction.
Apprentissage organisationnelL’apprentissage organisationnel, aussi appelé phase de création des connaissances est un processus collectif de développement et de modification des connaissances (aussi bien tacites qu’explicites) au sein d’une organisation, qui intervient dans les processus de gestion des connaissances. Elle se développe de différentes manières : observation, imitation, expérimentation, etc., de la concurrence, de l’environnement ou directement à l’intérieur de l’entreprise.