Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Calcul stochastiqueLe calcul est l’étude des phénomènes aléatoires dépendant du temps. À ce titre, c'est une extension de la théorie des probabilités. Ne pas confondre avec la technique des calculateurs stochastiques. Le domaine d’application du calcul stochastique comprend la mécanique quantique, le traitement du signal, la chimie, les mathématiques financières, la météorologie et même la musique. Un processus aléatoire est une famille de variables aléatoires indexée par un sous-ensemble de ou , souvent assimilé au temps (voir aussi Processus stochastique).
Constrained optimizationIn mathematical optimization, constrained optimization (in some contexts called constraint optimization) is the process of optimizing an objective function with respect to some variables in the presence of constraints on those variables. The objective function is either a cost function or energy function, which is to be minimized, or a reward function or utility function, which is to be maximized.
Décalage de Bernoulli (mathématiques)Le décalage de Bernoulli (également connu comme fonction dyadique ou fonction 2x mod 1) est l'application produite par la règle De façon équivalente, le décalage de Bernoulli peut également être défini comme la fonction itérée de la fonction affine par parties Le décalage de Bernoulli fournit un exemple de la manière dont une simple fonction unidimensionnelle peut mener au chaos. Si x0 est rationnel, l'image de x0 contient un nombre fini de valeurs différentes dans [0 ; 1] et l'orbite positive de x0 est périodique à partir d'un certain point, avec la même période que le développement binaire de x0.
Optimisation linéairethumb|upright=0.5|Optimisation linéaire dans un espace à deux dimensions (x1, x2). La fonction-coût fc est représentée par les lignes de niveau bleues à gauche et par le plan bleu à droite. L'ensemble admissible E est le pentagone vert. En optimisation mathématique, un problème d'optimisation linéaire demande de minimiser une fonction linéaire sur un polyèdre convexe. La fonction que l'on minimise ainsi que les contraintes sont décrites par des fonctions linéaires, d'où le nom donné à ces problèmes.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Transformation du boulangerLa transformation du boulanger est une transformation basée sur l'idée d'un mélange analogue au pétrissage par un boulanger qui étire une pâte jusqu'à ce qu'elle soit d'épaisseur moitié, puis la coupe en deux et superpose les deux moitiés pour lui redonner sa dimension initiale, et ainsi de suite. Ce mélange est souvent évoqué en théorie du chaos. Dans ce cas, il s'agit d'une version continue de la transformation. Une version discrète de cette transformation existe aussi pour manipuler des images informatiques.
Théorie supersymétrique de la dynamique stochastiqueLa théorie supersymétrique de la dynamique stochastique (TSDS) est une théorie exacte des équations différentielles (partielles) stochastiques (EDS). Elle représente une classe de modèles mathématiques très large qui décrit, en particulier, tous les systèmes dynamiques à temps continu, avec et sans bruit.
Opérateur de transfertEn mathématiques, l'opérateur de transfert encode l'information d'une application itérée et est fréquemment utilisé pour étudier le comportement des systèmes dynamiques, de la mécanique statistique, du chaos quantique et des fractales. L'opérateur de transfert est quelquefois appelé l'opérateur de Ruelle, en l'honneur de David Ruelle, ou l'opérateur de Ruelle-Perron-Frobenius faisant référence à l'applicabilité du théorème de Perron-Frobenius pour la détermination des valeurs propres de l'opérateur.
Stochastic controlStochastic control or stochastic optimal control is a sub field of control theory that deals with the existence of uncertainty either in observations or in the noise that drives the evolution of the system. The system designer assumes, in a Bayesian probability-driven fashion, that random noise with known probability distribution affects the evolution and observation of the state variables. Stochastic control aims to design the time path of the controlled variables that performs the desired control task with minimum cost, somehow defined, despite the presence of this noise.